Example #1
0
def test_masked_filter():
    from numpy import median

    from dials.algorithms.image.filter import median_filter

    xsize = 200
    ysize = 300
    kernel = (3, 3)

    image = generate_image(xsize, ysize)
    mask = generate_mask(xsize, ysize)
    result = median_filter(image, mask, kernel)
    eps = 1e-7

    for j in range(kernel[0], ysize - kernel[0]):
        for i in range(kernel[1], xsize - kernel[1]):
            if mask[j, i]:
                j0 = j - kernel[0]
                j1 = j + kernel[0] + 1
                i0 = i - kernel[1]
                i1 = i + kernel[1] + 1
                pixels = image[j0:j1, i0:i1]
                pmask = mask[j0:j1, i0:i1]
                pixels = pixels.as_1d().select(pmask.as_1d())
                if len(pixels) & 1:
                    value = median(pixels.as_numpy_array())
                else:
                    pixels = sorted(pixels)
                    value = pixels[len(pixels) // 2]
                assert result[j, i] == pytest.approx(value, abs=eps)
Example #2
0
    def tst_masked_filter(self):

        from numpy import median
        from dials.algorithms.image.filter import median_filter

        xsize = 200
        ysize = 300

        image = self.generate_image(xsize, ysize)
        mask = self.generate_mask(xsize, ysize)
        result = median_filter(image, mask, self.kernel)
        eps = 1e-7

        for j in range(self.kernel[0], ysize - self.kernel[0]):
            for i in range(self.kernel[1], xsize - self.kernel[1]):
                if mask[j, i]:
                    j0 = j - self.kernel[0]
                    j1 = j + self.kernel[0] + 1
                    i0 = i - self.kernel[1]
                    i1 = i + self.kernel[1] + 1
                    pixels = image[j0:j1, i0:i1]
                    pmask = mask[j0:j1, i0:i1]
                    pixels = pixels.as_1d().select(pmask.as_1d())
                    if len(pixels) & 1:
                        value = median(pixels.as_numpy_array())
                    else:
                        pixels = sorted(list(pixels))
                        value = pixels[len(pixels) // 2]
                    assert (abs(value - result[j, i]) < eps)
                else:
                    assert (abs(result[j, i] - 0.0) < eps)
        print 'OK'
Example #3
0
  def tst_masked_filter(self):

    from numpy import median
    from dials.algorithms.image.filter import median_filter

    xsize = 200
    ysize = 300

    image = self.generate_image(xsize, ysize)
    mask = self.generate_mask(xsize, ysize)
    result = median_filter(image, mask, self.kernel)
    eps = 1e-7

    for j in range(self.kernel[0], ysize-self.kernel[0]):
      for i in range(self.kernel[1], xsize-self.kernel[1]):
        if mask[j,i]:
          j0 = j - self.kernel[0]
          j1 = j + self.kernel[0] + 1
          i0 = i - self.kernel[1]
          i1 = i + self.kernel[1] + 1
          pixels = image[j0:j1,i0:i1]
          pmask = mask[j0:j1,i0:i1]
          pixels = pixels.as_1d().select(pmask.as_1d())
          if len(pixels) & 1:
            value = median(pixels.as_numpy_array())
          else:
            pixels = sorted(list(pixels))
            value = pixels[len(pixels) // 2]
          assert(abs(value - result[j,i]) < eps)
        else:
          assert(abs(result[j,i] - 0.0) < eps)
    print 'OK'
Example #4
0
def test_filter():
    from numpy import median
    from dials.algorithms.image.filter import median_filter

    xsize = 200
    ysize = 300
    kernel = (3, 3)

    image = generate_image(xsize, ysize)

    result = median_filter(image, kernel)

    eps = 1e-7

    for j in range(kernel[0], ysize - kernel[0]):
        for i in range(kernel[1], xsize - kernel[1]):
            j0 = j - kernel[0]
            j1 = j + kernel[0] + 1
            i0 = i - kernel[1]
            i1 = i + kernel[1] + 1
            pixels = image[j0:j1, i0:i1]
            value = median(pixels.as_numpy_array())
            assert result[j, i] == pytest.approx(value, abs=eps)
Example #5
0
    def tst_filter(self):
        from numpy import median
        from dials.algorithms.image.filter import median_filter

        xsize = 200
        ysize = 300

        image = self.generate_image(xsize, ysize)

        result = median_filter(image, self.kernel)

        eps = 1e-7

        for j in range(self.kernel[0], ysize - self.kernel[0]):
            for i in range(self.kernel[1], xsize - self.kernel[1]):
                j0 = j - self.kernel[0]
                j1 = j + self.kernel[0] + 1
                i0 = i - self.kernel[1]
                i1 = i + self.kernel[1] + 1
                pixels = image[j0:j1, i0:i1]
                value = median(pixels.as_numpy_array())
                assert (abs(value - result[j, i]) < eps)

        print 'OK'
Example #6
0
  def tst_filter(self):
    from numpy import median
    from dials.algorithms.image.filter import median_filter

    xsize = 200
    ysize = 300

    image = self.generate_image(xsize, ysize)

    result = median_filter(image, self.kernel)

    eps = 1e-7

    for j in range(self.kernel[0], ysize-self.kernel[0]):
      for i in range(self.kernel[1], xsize-self.kernel[1]):
        j0 = j - self.kernel[0]
        j1 = j + self.kernel[0] + 1
        i0 = i - self.kernel[1]
        i1 = i + self.kernel[1] + 1
        pixels = image[j0:j1,i0:i1]
        value = median(pixels.as_numpy_array())
        assert(abs(value - result[j,i]) < eps)

    print 'OK'
Example #7
0
  def finalize(self, data, mask):
    '''
    Finalize the model

    :param data: The data array
    :param mask: The mask array

    '''
    from dials.algorithms.image.filter import median_filter, mean_filter
    from dials.algorithms.image.fill_holes import diffusion_fill
    from dials.algorithms.image.fill_holes import simple_fill
    from dials.array_family import flex

    # Print some image properties
    sub_data = data.as_1d().select(mask.as_1d())
    logger.info('Raw image statistics:')
    logger.info('  min:  %d' % int(flex.min(sub_data)))
    logger.info('  max:  %d' % int(flex.max(sub_data)))
    logger.info('  mean: %d' % int(flex.mean(sub_data)))
    logger.info('')

    # Transform to polar
    logger.info('Transforming image data to polar grid')
    result = self.transform.to_polar(data, mask)
    data = result.data()
    mask = result.mask()
    sub_data = data.as_1d().select(mask.as_1d())
    logger.info('Polar image statistics:')
    logger.info('  min:  %d' % int(flex.min(sub_data)))
    logger.info('  max:  %d' % int(flex.max(sub_data)))
    logger.info('  mean: %d' % int(flex.mean(sub_data)))
    logger.info('')

    # Filter the image to remove noise
    if self.kernel_size > 0:
      if self.filter_type == 'median':
        logger.info('Applying median filter')
        data = median_filter(data, mask, (self.kernel_size, 0))
        sub_data = data.as_1d().select(mask.as_1d())
        logger.info('Median polar image statistics:')
        logger.info('  min:  %d' % int(flex.min(sub_data)))
        logger.info('  max:  %d' % int(flex.max(sub_data)))
        logger.info('  mean: %d' % int(flex.mean(sub_data)))
        logger.info('')
      elif self.filter_type == 'mean':
        logger.info('Applying mean filter')
        mask_as_int = mask.as_1d().as_int()
        mask_as_int.reshape(mask.accessor())
        data = mean_filter(data, mask_as_int, (self.kernel_size, 0), 1)
        sub_data = data.as_1d().select(mask.as_1d())
        logger.info('Mean polar image statistics:')
        logger.info('  min:  %d' % int(flex.min(sub_data)))
        logger.info('  max:  %d' % int(flex.max(sub_data)))
        logger.info('  mean: %d' % int(flex.mean(sub_data)))
        logger.info('')
      else:
        raise RuntimeError('Unknown filter_type: %s' % self.filter_type)

    # Fill any remaining holes
    logger.info("Filling holes")
    data = simple_fill(data, mask)
    data = diffusion_fill(data, mask, self.niter)
    mask = flex.bool(data.accessor(), True)
    sub_data = data.as_1d().select(mask.as_1d())
    logger.info('Filled polar image statistics:')
    logger.info('  min:  %d' % int(flex.min(sub_data)))
    logger.info('  max:  %d' % int(flex.max(sub_data)))
    logger.info('  mean: %d' % int(flex.mean(sub_data)))
    logger.info('')

    # Transform back
    logger.info('Transforming image data from polar grid')
    result = self.transform.from_polar(data, mask)
    data = result.data()
    mask = result.mask()
    sub_data = data.as_1d().select(mask.as_1d())
    logger.info('Final image statistics:')
    logger.info('  min:  %d' % int(flex.min(sub_data)))
    logger.info('  max:  %d' % int(flex.max(sub_data)))
    logger.info('  mean: %d' % int(flex.mean(sub_data)))
    logger.info('')

    # Fill in any discontinuities
    # FIXME NEED TO HANDLE DISCONTINUITY
    # mask = ~self.transform.discontinuity()[:-1,:-1]
    # data = diffusion_fill(data, mask, self.niter)

    # Get and apply the mask
    mask = self.experiment.imageset.get_mask(0)[0]
    mask = mask.as_1d().as_int().as_double()
    mask.reshape(data.accessor())
    data *= mask

    # Return the result
    return data
Example #8
0
    def finalize(self, data, mask):
        """
        Finalize the model

        :param data: The data array
        :param mask: The mask array
        """
        from dials.algorithms.image.filter import median_filter, mean_filter
        from dials.algorithms.image.fill_holes import diffusion_fill
        from dials.algorithms.image.fill_holes import simple_fill
        from dials.array_family import flex

        # Print some image properties
        sub_data = data.as_1d().select(mask.as_1d())
        logger.info("Raw image statistics:")
        logger.info("  min:  %d" % int(flex.min(sub_data)))
        logger.info("  max:  %d" % int(flex.max(sub_data)))
        logger.info("  mean: %d" % int(flex.mean(sub_data)))
        logger.info("")

        # Transform to polar
        logger.info("Transforming image data to polar grid")
        result = self.transform.to_polar(data, mask)
        data = result.data()
        mask = result.mask()
        sub_data = data.as_1d().select(mask.as_1d())
        logger.info("Polar image statistics:")
        logger.info("  min:  %d" % int(flex.min(sub_data)))
        logger.info("  max:  %d" % int(flex.max(sub_data)))
        logger.info("  mean: %d" % int(flex.mean(sub_data)))
        logger.info("")

        # Filter the image to remove noise
        if self.kernel_size > 0:
            if self.filter_type == "median":
                logger.info("Applying median filter")
                data = median_filter(data,
                                     mask, (self.kernel_size, 0),
                                     periodic=True)
                sub_data = data.as_1d().select(mask.as_1d())
                logger.info("Median polar image statistics:")
                logger.info("  min:  %d" % int(flex.min(sub_data)))
                logger.info("  max:  %d" % int(flex.max(sub_data)))
                logger.info("  mean: %d" % int(flex.mean(sub_data)))
                logger.info("")
            elif self.filter_type == "mean":
                logger.info("Applying mean filter")
                mask_as_int = mask.as_1d().as_int()
                mask_as_int.reshape(mask.accessor())
                data = mean_filter(data, mask_as_int, (self.kernel_size, 0), 1)
                sub_data = data.as_1d().select(mask.as_1d())
                logger.info("Mean polar image statistics:")
                logger.info("  min:  %d" % int(flex.min(sub_data)))
                logger.info("  max:  %d" % int(flex.max(sub_data)))
                logger.info("  mean: %d" % int(flex.mean(sub_data)))
                logger.info("")
            else:
                raise RuntimeError("Unknown filter_type: %s" %
                                   self.filter_type)

        # Fill any remaining holes
        logger.info("Filling holes")
        data = simple_fill(data, mask)
        data = diffusion_fill(data, mask, self.niter)
        mask = flex.bool(data.accessor(), True)
        sub_data = data.as_1d().select(mask.as_1d())
        logger.info("Filled polar image statistics:")
        logger.info("  min:  %d" % int(flex.min(sub_data)))
        logger.info("  max:  %d" % int(flex.max(sub_data)))
        logger.info("  mean: %d" % int(flex.mean(sub_data)))
        logger.info("")

        # Transform back
        logger.info("Transforming image data from polar grid")
        result = self.transform.from_polar(data, mask)
        data = result.data()
        mask = result.mask()
        sub_data = data.as_1d().select(mask.as_1d())
        logger.info("Final image statistics:")
        logger.info("  min:  %d" % int(flex.min(sub_data)))
        logger.info("  max:  %d" % int(flex.max(sub_data)))
        logger.info("  mean: %d" % int(flex.mean(sub_data)))
        logger.info("")

        # Fill in any discontinuities
        mask = ~self.transform.discontinuity()[:-1, :-1]
        data = diffusion_fill(data, mask, self.niter)

        # Get and apply the mask
        mask = self.experiment.imageset.get_mask(0)[0]
        mask = mask.as_1d().as_int().as_double()
        mask.reshape(data.accessor())
        data *= mask

        # Return the result
        return data