Example #1
0
    def create(cls, data, detector_space=False, deconvolution=False):
        from dials.algorithms.profile_model.gaussian_rs.algorithm import (
            GaussianRSIntensityCalculatorFactory,
        )
        from dials.algorithms.integration.parallel_integrator import (
            GaussianRSReferenceProfileData,
        )
        from dials.algorithms.integration.parallel_integrator import (
            GaussianRSMultiCrystalReferenceProfileData,
        )
        from dials.algorithms.integration.parallel_integrator import (
            ReferenceProfileData,
        )
        from dials.algorithms.profile_model.modeller import CircleSampler
        from dials.algorithms.profile_model.gaussian_rs.transform import TransformSpec

        reference = data.reference[0]
        experiments = data.experiments

        assert len(reference) % 9 == 0
        num_scan_points = len(reference) // 9

        data_spec = GaussianRSMultiCrystalReferenceProfileData()
        for e in experiments:

            sampler = CircleSampler(
                e.detector[0].get_image_size(),
                e.scan.get_array_range(),
                num_scan_points,
            )

            spec = TransformSpec(
                e.beam,
                e.detector,
                e.goniometer,
                e.scan,
                e.profile.sigma_b(deg=False),
                e.profile.sigma_m(deg=False),
                e.profile.n_sigma() * 1.5,
                5,
            )

            temp = reference

            reference = ReferenceProfileData()
            for d, m in temp:
                reference.append(d, m)

            spec = GaussianRSReferenceProfileData(reference, sampler, spec)

            data_spec.append(spec)

        return GaussianRSIntensityCalculatorFactory.create(
            data_spec, detector_space, deconvolution
        )
Example #2
0
def test_gaussianrs_profile_data_pickling(data):
    from dials.algorithms.integration.parallel_integrator import (
        GaussianRSReferenceProfileData,
    )
    from dials.algorithms.integration.parallel_integrator import (
        GaussianRSMultiCrystalReferenceProfileData,
    )
    from dials.algorithms.integration.parallel_integrator import ReferenceProfileData
    from dials.algorithms.profile_model.modeller import CircleSampler
    from dials.algorithms.profile_model.gaussian_rs.transform import TransformSpec

    reference = data.reference[0]
    experiments = data.experiments

    assert len(reference) % 9 == 0
    num_scan_points = len(reference) // 9

    data_spec = GaussianRSMultiCrystalReferenceProfileData()
    for e in experiments:

        sampler = CircleSampler(
            e.detector[0].get_image_size(), e.scan.get_array_range(), num_scan_points
        )

        spec = TransformSpec(
            e.beam,
            e.detector,
            e.goniometer,
            e.scan,
            e.profile.sigma_b(deg=False),
            e.profile.sigma_m(deg=False),
            e.profile.n_sigma() * 1.5,
            5,
        )

        temp = reference

        reference = ReferenceProfileData()
        for d, m in temp:
            reference.append(d, m)

        spec = GaussianRSReferenceProfileData(reference, sampler, spec)

        data_spec.append(spec)

    s = pickle.dumps(data_spec)

    pickle.loads(s)
Example #3
0
def construct_reference(experiments, reference):
    from dials.algorithms.integration.parallel_integrator import (
        GaussianRSReferenceProfileData, )
    from dials.algorithms.integration.parallel_integrator import (
        GaussianRSMultiCrystalReferenceProfileData, )
    from dials.algorithms.integration.parallel_integrator import ReferenceProfileData
    from dials.algorithms.profile_model.modeller import CircleSampler
    from dials.array_family import flex
    from dials.algorithms.profile_model.gaussian_rs.transform import TransformSpec

    assert len(reference) % 9 == 0
    num_scan_points = len(reference) // 9

    data_spec = GaussianRSMultiCrystalReferenceProfileData()
    for e in experiments:

        sampler = CircleSampler(e.detector[0].get_image_size(),
                                e.scan.get_array_range(), num_scan_points)

        spec = TransformSpec(
            e.beam,
            e.detector,
            e.goniometer,
            e.scan,
            e.profile.sigma_b(deg=False),
            e.profile.sigma_m(deg=False),
            e.profile.n_sigma() * 1.5,
            grid_size,
        )

        temp = reference

        reference = ReferenceProfileData()
        for d, m in temp:
            reference.append(d, m)

        spec = GaussianRSReferenceProfileData(reference, sampler, spec)

        data_spec.append(spec)
    return data_spec
Example #4
0
    def create(cls,
               experiments,
               grid_size=5,
               scan_step=5,
               grid_method="circular_grid"):
        """
        Create the intensity calculator

        """
        from dials.algorithms.integration.parallel_integrator import (
            GaussianRSReferenceCalculator, )
        from dials.algorithms.profile_model.modeller import SingleSampler
        from dials.algorithms.profile_model.modeller import CircleSampler
        from dials.algorithms.profile_model.modeller import GridSampler
        from dials.algorithms.profile_model.modeller import EwaldSphereSampler
        from dials.algorithms.profile_model.gaussian_rs.transform import TransformSpec

        from math import ceil

        # Assume the detector and scan are the same in each case
        detector = experiments[0].detector
        scan = experiments[0].scan

        # Get the number of scan points
        scan_range = scan.get_oscillation_range(deg=True)
        scan_range = abs(scan_range[1] - scan_range[0])
        num_scan_points = int(ceil(scan_range / scan_step))

        # If multi panel then set to single
        if grid_method in ["regular_grid", "circular_grid"
                           ] and len(detector) > 1:
            grid_method = "single"

        # Create the sampler
        if grid_method == "single":
            sampler = SingleSampler(scan.get_array_range(), num_scan_points)
        elif grid_method == "regular_grid":
            sampler = GridSampler(
                detector[0].get_image_size(),
                scan.get_array_range(),
                (3, 3, num_scan_points),
            )
        elif grid_method == "circular_grid":
            sampler = CircleSampler(detector[0].get_image_size(),
                                    scan.get_array_range(), num_scan_points)
        elif grid_method == "spherical_grid":
            sampler = EwaldSphereGridSampler(
                experiments[0].beam,
                experiments[0].detector,
                experiments[0].goniometer,
                experiments[0].scan,
                num_scan_points,
            )
        else:
            raise RuntimeError("Unknown grid type")

        # Create the spec list
        spec_list = []
        for experiment in experiments:

            spec = TransformSpec(
                experiment.beam,
                experiment.detector,
                experiment.goniometer,
                experiment.scan,
                experiment.profile.sigma_b(deg=False),
                experiment.profile.sigma_m(deg=False),
                experiment.profile.n_sigma() * 1.5,
                grid_size,
            )

            spec_list.append(spec)

        # Return the intensity algorithm
        return GaussianRSReferenceCalculator(sampler, spec_list)
Example #5
0
def compute_reference(experiments, reflections):
    from dials.algorithms.profile_model.modeller import CircleSampler
    from dials.array_family import flex
    from dials.algorithms.profile_model.gaussian_rs.transform import TransformForward
    from dials.algorithms.profile_model.gaussian_rs.transform import TransformSpec
    from dials.algorithms.profile_model.gaussian_rs import CoordinateSystem

    reflections = select_strong(reflections)
    print("Selected %d strong spots" % len(reflections))

    sampler = CircleSampler(
        experiments[0].detector[0].get_image_size(),
        experiments[0].scan.get_array_range(),
        1,
    )

    n_sigma = 4.0
    grid_size = 25
    spec = TransformSpec(
        experiments[0].beam,
        experiments[0].detector,
        experiments[0].goniometer,
        experiments[0].scan,
        experiments[0].profile.sigma_b(deg=False),
        experiments[0].profile.sigma_m(deg=False),
        n_sigma,
        grid_size,
    )

    m2 = experiments[0].goniometer.get_rotation_axis()
    s0 = experiments[0].beam.get_s0()

    reference = [
        flex.double(
            flex.grid(1 + 2 * grid_size, 1 + 2 * grid_size, 1 + 2 * grid_size))
        for i in range(len(sampler))
    ]
    count = [0] * len(sampler)

    for r in reflections:
        s1 = r["s1"]
        phi = r["xyzcal.mm"][2]
        xyz = r["xyzcal.px"]
        bbox = r["bbox"]
        panel = r["panel"]
        image = r["shoebox"].data.as_double()
        mask = r["shoebox"].mask.as_1d() == 5
        mask.reshape(image.accessor())
        cs = CoordinateSystem(m2, s0, s1, phi)

        try:
            transform = TransformForward(spec, cs, bbox, panel, image, mask)
            d = transform.profile()

            d /= flex.sum(d)

            index = sampler.nearest(0, xyz)
            indices = sampler.nearest_n(0, xyz)
            for i in indices:
                w = sampler.weight(i, 0, xyz)
                reference[i] += w * d
                count[i] += 1
        except Exception:
            pass

    for i in range(len(reference)):
        r = reference[i]
        if flex.sum(r) > 0:
            print(flex.max(r))
            g = r.accessor()
            r = r.as_1d()
            s = r > 0.02 * flex.max(r)
            r.set_selected(~s, flex.double(len(r), 0))
            r = r / flex.sum(r)
            r.reshape(g)
            reference[i] = r

    for i in range(len(reference)):
        from matplotlib import pylab

        print(count[i])
        r = reference[i]
        d = r.as_numpy_array()[11, :, :]
        pylab.imshow(d, interpolation="None")
        pylab.show()

    return reference
Example #6
0
def integrate(experiments, reflections, reference):
    from dials.algorithms.profile_model.modeller import CircleSampler
    from dials.array_family import flex
    from dials.algorithms.profile_model.gaussian_rs.transform import TransformReverse
    from dials.algorithms.profile_model.gaussian_rs.transform import TransformForward
    from dials.algorithms.profile_model.gaussian_rs.transform import (
        TransformReverseNoModel, )
    from dials.algorithms.profile_model.gaussian_rs.transform import TransformSpec
    from dials.algorithms.profile_model.gaussian_rs import CoordinateSystem

    selection = reflections.get_flags(reflections.flags.integrated_sum)
    reflections = reflections.select(selection)
    print("Selected %d reflections to integrate" % len(reflections))

    sampler = CircleSampler(
        experiments[0].detector[0].get_image_size(),
        experiments[0].scan.get_array_range(),
        1,
    )

    n_sigma = 4.0
    grid_size = 25
    spec = TransformSpec(
        experiments[0].beam,
        experiments[0].detector,
        experiments[0].goniometer,
        experiments[0].scan,
        experiments[0].profile.sigma_b(deg=False),
        experiments[0].profile.sigma_m(deg=False),
        n_sigma,
        grid_size,
    )

    m2 = experiments[0].goniometer.get_rotation_axis()
    s0 = experiments[0].beam.get_s0()

    Iprf = flex.double(len(reflections))
    Vprf = flex.double(len(reflections))
    Cprf = flex.double(len(reflections))
    Fprf = flex.bool(len(reflections))

    for i, r in enumerate(reflections):
        s1 = r["s1"]
        phi = r["xyzcal.mm"][2]
        xyz = r["xyzcal.px"]
        bbox = r["bbox"]
        panel = r["panel"]
        image = r["shoebox"].data.as_double()
        background = r["shoebox"].background.as_double()
        mask = r["shoebox"].mask.as_1d(
        ) == 5  # | (r['shoebox'].mask.as_1d() == 3)
        mask.reshape(image.accessor())
        cs = CoordinateSystem(m2, s0, s1, phi)

        index = sampler.nearest(0, xyz)

        profile = reference[index]

        # print flex.sum(profile)
        # print r['partiality']

        if False:
            from dials.algorithms.integration.maximum_likelihood import (
                ProfileFittingDouble as ProfileFitting, )

            transform = TransformReverseNoModel(spec, cs, bbox, panel, profile)
            p = transform.profile()
            d = image
            m = mask
            b = background
            # print flex.sum(p)

            ysize, xsize = p.all()[1:3]

            p1 = flex.double(flex.grid(1, ysize, xsize))
            d1 = flex.double(flex.grid(1, ysize, xsize))
            b1 = flex.double(flex.grid(1, ysize, xsize))
            m1 = flex.double(flex.grid(1, ysize, xsize))
            for k in range(p.all()[0]):
                p1 += p[k:k + 1, :, :]
                d1 += d[k:k + 1, :, :]
                b1 += b[k:k + 1, :, :]
                m1 = m[k:k + 1, :, :]

            try:

                fit = ProfileFitting(p1, m1, d1, b1, 1e-3, 1000)
                assert fit.niter() < 1000
                Iprf[i] = fit.intensity()
                Vprf[i] = fit.variance()
                Cprf[i] = fit.correlation()
                Fprf[i] = True
                print(i, fit.intensity(), flex.sum(p1))
                # from matplotlib import pylab
                # pylab.imshow(p1.as_numpy_array()[0,:,:], interpolation='none')
                # pylab.show()
            except Exception:
                pass

        else:
            from dials.algorithms.integration.fit import (
                ProfileFittingDouble as ProfileFitting, )

            try:

                transform = TransformForward(spec, cs, bbox, panel, image,
                                             background, mask)

                index = sampler.nearest(0, xyz)

                p = reference[index]
                d = transform.profile()
                b = transform.background()
                m = p > 0

                fit = ProfileFitting(p, m, d, b, 1e-3, 1000)
                assert fit.niter() < 1000
                Iprf[i] = fit.intensity()
                Vprf[i] = fit.variance()
                Cprf[i] = fit.correlation()
                Fprf[i] = True
                print(i, fit.intensity(), flex.sum(p))
                # from matplotlib import pylab
                # pylab.imshow(p1.as_numpy_array()[0,:,:], interpolation='none')
                # pylab.show()
            except Exception:
                pass

    reflections["intensity.prf.value"] = Iprf
    reflections["intensity.prf.variance"] = Vprf
    reflections["intensity.prf.correlation"] = Cprf
    reflections.set_flags(Fprf, reflections.flags.integrated_prf)

    return reflections
Example #7
0
def integrate_job(block,
                  experiments,
                  reflections,
                  reference,
                  grid_size=5,
                  detector_space=False):
    from dials.algorithms.profile_model.modeller import CircleSampler
    from dials.array_family import flex
    from dials.algorithms.profile_model.gaussian_rs.transform import TransformReverse
    from dials.algorithms.profile_model.gaussian_rs.transform import TransformForward
    from dials.algorithms.profile_model.gaussian_rs.transform import (
        TransformReverseNoModel, )
    from dials.algorithms.profile_model.gaussian_rs.transform import TransformSpec
    from dials.algorithms.profile_model.gaussian_rs import CoordinateSystem
    from dials.algorithms.integration.fit import ProfileFitter
    from dials.array_family import flex
    from dials.model.data import make_image

    reflections["shoebox"] = flex.shoebox(reflections["panel"],
                                          reflections["bbox"],
                                          allocate=True)

    frame0, frame1 = experiments[0].scan.get_array_range()
    frame0 = frame0 + block[0]
    frame1 = frame0 + block[1]

    reflections["shoebox"] = flex.shoebox(reflections["panel"],
                                          reflections["bbox"],
                                          allocate=True)
    extractor = flex.ShoeboxExtractor(reflections, 1, frame0, frame1)

    iset = experiments[0].imageset[block[0]:block[1]]
    for i in range(len(iset)):
        print("Reading image %d" % i)
        data = iset.get_raw_data(i)
        mask = iset.get_mask(i)
        extractor.next(make_image(data, mask))

    print("Computing mask")
    reflections.compute_mask(experiments)

    print("Computing background")
    reflections.compute_background(experiments)

    print("Computing centroid")
    reflections.compute_centroid(experiments)

    print("Computing summed intensity")
    reflections.compute_summed_intensity()

    assert len(reference) % 9 == 0
    num_scan_points = len(reference) // 9

    sampler = CircleSampler(
        experiments[0].detector[0].get_image_size(),
        experiments[0].scan.get_array_range(),
        num_scan_points,
    )

    spec = TransformSpec(
        experiments[0].beam,
        experiments[0].detector,
        experiments[0].goniometer,
        experiments[0].scan,
        experiments[0].profile.sigma_b(deg=False),
        experiments[0].profile.sigma_m(deg=False),
        experiments[0].profile.n_sigma() * 1.5,
        grid_size,
    )

    m2 = experiments[0].goniometer.get_rotation_axis()
    s0 = experiments[0].beam.get_s0()

    Iprf = flex.double(len(reflections))
    Vprf = flex.double(len(reflections))
    Cprf = flex.double(len(reflections))
    Fprf = flex.bool(len(reflections))
    Part = reflections["partiality"]

    reflections["intensity.prf_old.value"] = reflections["intensity.prf.value"]
    reflections["intensity.prf_old.variance"] = reflections[
        "intensity.prf.variance"]

    selection = reflections.get_flags(reflections.flags.integrated_prf)

    reflections.unset_flags(~Fprf, reflections.flags.integrated_prf)

    for i, r in enumerate(reflections):

        if selection[i] == False:
            continue

        s1 = r["s1"]
        phi = r["xyzcal.mm"][2]
        xyz = r["xyzcal.px"]
        bbox = r["bbox"]
        panel = r["panel"]
        image = r["shoebox"].data.as_double()
        background = r["shoebox"].background.as_double()
        mask = r["shoebox"].mask.as_1d(
        ) == 5  # | (r['shoebox'].mask.as_1d() == 3)
        mask.reshape(image.accessor())
        cs = CoordinateSystem(m2, s0, s1, phi)

        index = sampler.nearest(0, xyz)

        profile, profile_mask = reference[index]

        # print flex.sum(profile)
        # print r['partiality']

        if detector_space:

            transform = TransformReverseNoModel(spec, cs, bbox, panel, profile)
            p = transform.profile()
            d = image
            m = mask
            b = background
            # print flex.sum(p)
            Part[i] = flex.sum(p)
            # ysize, xsize = p.all()[1:3]

            # p1 = flex.double(flex.grid(1, ysize , xsize))
            # d1 = flex.double(flex.grid(1, ysize , xsize))
            # b1 = flex.double(flex.grid(1, ysize , xsize))
            # m1 = flex.double(flex.grid(1, ysize , xsize))
            # for k in range(p.all()[0]):
            #   p1 += p[k:k+1,:,:]
            #   d1 += d[k:k+1,:,:]
            #   b1 += b[k:k+1,:,:]
            #   m1 = m[k:k+1,:,:]

            try:

                fit = ProfileFitter(d, b, m, p, 1e-3, 100)
                assert fit.niter() < 100
                Iprf[i] = fit.intensity()
                Vprf[i] = fit.variance()
                Cprf[i] = fit.correlation()
                Fprf[i] = True
                # if r['intensity.sum.value'] > 10 and abs(fit.intensity()) < 1e-3:
                print(
                    r["miller_index"],
                    i,
                    fit.intensity(),
                    r["intensity.sum.value"],
                    r["intensity.prf_old.value"],
                    Part[i],
                    fit.niter(),
                )
                # from matplotlib import pylab
                # pylab.imshow(p1.as_numpy_array()[0,:,:], interpolation='none')
                # pylab.show()
            except Exception as e:
                print(e)
                pass

        else:

            try:

                transform = TransformForward(spec, cs, bbox, panel, image,
                                             background, mask)

                p = profile
                d = transform.profile()
                b = transform.background()
                m = transform.mask() & profile_mask

                # if r['miller_index'] == (9, -25, 74):
                #   print list(p)
                #   print list(m)
                #   print list(b)
                #   print list(d)
                #   exit(0)

                fit = ProfileFitter(d, b, m, p, 1e-3, 100)
                assert fit.niter() < 100
                Iprf[i] = fit.intensity()[0]
                Vprf[i] = fit.variance()[0]
                Cprf[i] = fit.correlation()
                Fprf[i] = True
                print(r["miller_index"], i, fit.intensity(),
                      r["intensity.prf_old.value"])
                # from matplotlib import pylab
                # pylab.imshow(p1.as_numpy_array()[0,:,:], interpolation='none')
                # pylab.show()
            except Exception as e:
                pass

    reflections["intensity.prf.value"] = Iprf
    reflections["intensity.prf.variance"] = Vprf
    reflections["intensity.prf.correlation"] = Cprf
    reflections.set_flags(Fprf, reflections.flags.integrated_prf)

    del reflections["shoebox"]

    return reflections