def build_minimiser(self): assert self._params.engine in [ "SimpleLBFGS", "LBFGScurvs", "GaussNewton" ] if self._params.engine == "SimpleLBFGS": refiner = SimpleLBFGS( target=self._target, prediction_parameterisation=self._prediction_parameterisation, log=self._params.logfile, ) return refiner if self._params.engine == "LBFGScurvs": refiner = LBFGScurvs( target=self._target, prediction_parameterisation=self._prediction_parameterisation, log=self._params.logfile, ) return refiner if self._params.engine == "GaussNewton": refiner = GaussNewtonIterations( target=self._target, prediction_parameterisation=self._prediction_parameterisation, log=self._params.logfile, ) return refiner
def __init__(self, scaler, *args, **kwargs): logger.info("Performing a round of scaling with an LBFGS minimizer. \n") LBFGScurvs.__init__(self, *args, **kwargs) ScalingRefinery.__init__(self, scaler, *args, **kwargs) self._target.curvatures = True