def groupingAnalysis(): groupDiet = dietActInfoRetrv.getGroups(labelsDietType) groupAct = dietActInfoRetrv.getGroups(labelsActType) print groupAct print groupDiet dd = {} for key1 in groupDiet: dd[key1] = {} for key2 in groupAct: dd[key1][key2] = 0 for item in groupDiet[key1]: if item in groupAct[key2]: dd[key1][key2] += 1 print dd dd = {} for key1 in groupAct: dd[key1] = {} for key2 in groupDiet: dd[key1][key2] = 0 for item in groupAct[key1]: if item in groupDiet[key2]: dd[key1][key2] += 1 print dd
def buildSubAveInfo(): workbookW = xlwt.Workbook() ws = workbookW.add_sheet('AveInfo') groupAct = dietActInfoRetrv.getGroups(labelsActType) groupDiet = dietActInfoRetrv.getGroups(labelsDietType) Age, Gender, Height, Weight, BMI, FatFree, FatMass, PercFat, Vo2max = slpInfoRetrv.getDemoGInfo( ) SlpHours = slpInfoRetrv.getSlpHours() MedianHR = slpInfoRetrv.getMedianHR() MedianHRBefore = slpInfoRetrv.getMedianHRBefore() MedianHRAfter = slpInfoRetrv.getMedianHRAfter() titles = [ 'SubjId', 'ActGroup', 'DietGroup', 'HoursSleep', 'MedianHR', 'MedianHRBefore', 'MedianHRAfter', 'age', 'gender', 'height', 'weight', 'BMI', 'FatFreeMass', 'FatMass', 'PercFat', 'vo2max' ] for i in range(len(titles)): ws.write(0, i, titles[i]) rowW = 1 for index in range(len(sleep_list)): ws.write(rowW, 0, sleep_list[index]) for key in groupAct: if sleep_list[index] in groupAct[key]: ws.write(rowW, 1, key) break for key in groupDiet: if sleep_list[index] in groupDiet[key]: ws.write(rowW, 2, key) break ws.write(rowW, 1 + 2, SlpHours[index]) ws.write(rowW, 2 + 2, MedianHR[index]) ws.write(rowW, 3 + 2, MedianHRBefore[index]) ws.write(rowW, 4 + 2, MedianHRAfter[index]) ws.write(rowW, 5 + 2, Age[index]) ws.write(rowW, 6 + 2, Gender[index]) ws.write(rowW, 7 + 2, Height[index]) ws.write(rowW, 8 + 2, Weight[index]) ws.write(rowW, 9 + 2, BMI[index]) ws.write(rowW, 10 + 2, FatFree[index]) ws.write(rowW, 11 + 2, FatMass[index]) ws.write(rowW, 12 + 2, PercFat[index]) ws.write(rowW, 13 + 2, Vo2max[index]) rowW += 1 ws2 = workbookW.add_sheet('DietTF') row_labels = utilise.itemDict2list(dataGen4DietAct.genDietTypeDict()) X = utilise.normArray(dataGen4DietAct.genDietTypeTFArray()) ws2.write(0, 0, 'SubjId') ws2.write(0, 1, 'DietGroup') for i in range(len(row_labels)): ws2.write(0, i + 2, row_labels[i]) rowW = 1 for index in range(len(available_list)): ws2.write(rowW, 0, available_list[index]) for key in groupDiet: if available_list[index] in groupDiet[key]: ws2.write(rowW, 1, key) break for i in range(len(row_labels)): ws2.write(rowW, i + 2, X[index][i]) rowW += 1 ws3 = workbookW.add_sheet('ActTF') row_labels = utilise.itemDict2list(dataGen4DietAct.genActTypeDict()) X = utilise.normArray(dataGen4DietAct.genActTypeTFArray()) ws3.write(0, 0, 'SubjId') ws3.write(0, 1, 'ActGroup') for i in range(len(row_labels)): ws3.write(0, i + 2, row_labels[i]) rowW = 1 for index in range(len(available_list)): ws3.write(rowW, 0, available_list[index]) for key in groupAct: if available_list[index] in groupAct[key]: ws3.write(rowW, 1, key) break for i in range(len(row_labels)): ws3.write(rowW, i + 2, X[index][i]) rowW += 1 workbookW.save('SubAveInfo.xls')
def genDemoInfoDietGroups(): groupDiet = dietActInfoRetrv.getGroups(labelsDietType) Age, Gender, Height, Weight, BMI, FatFree, FatMass, PercFat, Vo2max = slpInfoRetrv.getDemoGInfo( ) SlpHours = slpInfoRetrv.getSlpHours() MedianHR = slpInfoRetrv.getMedianHR() MedianHRBefore = slpInfoRetrv.getMedianHRBefore() MedianHRAfter = slpInfoRetrv.getMedianHRAfter() # write the info to excel file workbookW = xlwt.Workbook() ws = workbookW.add_sheet('sheet1') rowW = 0 titles = [ 'age', 'men', 'women', 'height', 'weight', 'BMI', 'fat_free', 'fat_mass', 'perc_fat', 'vo2max', 'slpHours', 'medianHR', 'medianHRBefore', 'medianHRAfter' ] col = 0 for item in titles: ws.write(rowW, col, item) col += 1 rowW += 1 demoDict = {} for key in groupDiet: demoDict[key] = {} temp_Age = [] temp_Gender = [] temp_Height = [] temp_Weight = [] temp_BMI = [] temp_FatFree = [] temp_FatMass = [] temp_PercFat = [] temp_Vo2max = [] temp_slpHours = [] temp_MedianHR = [] temp_MedianHRBefore = [] temp_MedianHRAfter = [] for index in range(len(sleep_list)): if sleep_list[index] in groupDiet[key]: temp_Age.append(Age[index]) temp_Gender.append(Gender[index]) temp_Height.append(Height[index]) temp_Weight.append(Weight[index]) temp_BMI.append(BMI[index]) temp_FatFree.append(FatFree[index]) temp_FatMass.append(FatMass[index]) temp_PercFat.append(PercFat[index]) temp_Vo2max.append(Vo2max[index]) temp_slpHours.append(SlpHours[index]) temp_MedianHR.append(MedianHR[index]) temp_MedianHRBefore.append(MedianHRBefore[index]) temp_MedianHRAfter.append(MedianHRAfter[index]) demoDict[key]['age'] = sum(temp_Age) / float(len(temp_Age)) demoDict[key]['men'] = temp_Gender.count(1.0) demoDict[key]['women'] = temp_Gender.count(0.0) demoDict[key]['height'] = sum(temp_Height) / float(len(temp_Height)) demoDict[key]['weight'] = sum(temp_Weight) / float(len(temp_Weight)) demoDict[key]['BMI'] = sum(temp_BMI) / float(len(temp_BMI)) demoDict[key]['fat_free'] = sum(temp_FatFree) / float( len(temp_FatFree)) demoDict[key]['fat_mass'] = sum(temp_FatMass) / float( len(temp_FatMass)) demoDict[key]['perc_fat'] = sum(temp_PercFat) / float( len(temp_PercFat)) demoDict[key]['vo2max'] = sum(temp_Vo2max) / float(len(temp_Vo2max)) demoDict[key]['slpHours'] = sum(temp_slpHours) / float( len(temp_slpHours)) demoDict[key]['medianHR'] = sum(temp_MedianHR) / float( len(temp_MedianHR)) demoDict[key]['medianHRBefore'] = sum(temp_MedianHRBefore) / float( len(temp_MedianHRBefore)) demoDict[key]['medianHRAfter'] = sum(temp_MedianHRAfter) / float( len(temp_MedianHRAfter)) col = 0 for item in titles: if item in demoDict[key]: ws.write(rowW, col, demoDict[key][item]) col += 1 rowW += 1 workbookW.save('tempDietGroupDemo.xls') print demoDict