def test_distance_neighbor_dist2_repeated(): # A constant pattern a = np.ones((100, 100, 3)) # Let's get some translated slices w = 80 N = 10 A = [] for i in range(N): A.append(a[i:i + w, 0:0 + w, ...]) print() areas = [0.01, 0.03, 0.05, 0.07] Ds = [DistanceNeighborDist((a, a)) for a in areas] L2 = DistanceNorm(2) for i in range(N): y0 = UncertainImage(A[0]) y1 = UncertainImage(A[i]) vl2 = L2.distance(y0, y1) ds = [x.distance(y0, y1) for x in Ds] assert_allclose(ds, 0) # < this must be zero s = ";".join("%1.5f" % x for x in ds) print('- step %d L2: %1.5f %s' % (i, vl2, s))
def test_distance_neighbor_dist2_rgb(): # A random pattern a = np.random.rand(100, 100, 3) # Let's get some translated slices w = 80 N = 10 A = [] for i in range(N): A.append(a[i:i + w, 0:0 + w, ...]) print() areas = [0.01, 0.03, 0.05, 0.07] Ds = [DistanceNeighborDist((a, a)) for a in areas] L2 = DistanceNorm(2) for i in range(N): y0 = UncertainImage(A[0]) y1 = UncertainImage(A[i]) vl2 = L2.distance(y0, y1) ds = [x.distance(y0, y1) for x in Ds] s = ";".join("%1.5f" % x for x in ds) print('- step %d L2: %1.5f %s' % (i, vl2, s))
def test_distance_neighbor_dist2_rgb(): # A random pattern a = np.random.rand(100, 100, 3) # Let's get some translated slices w = 80 N = 10 A = [] for i in range(N): A.append(a[i:i + w, 0:0 + w, ...]) print() areas = [0.01, 0.03, 0.05, 0.07] Ds = [DistanceNeighborDist((a, a)) for a in areas ] L2 = DistanceNorm(2) for i in range(N): y0 = UncertainImage(A[0]) y1 = UncertainImage(A[i]) vl2 = L2.distance(y0, y1) ds = [x.distance(y0, y1) for x in Ds] s = ";".join("%1.5f" % x for x in ds) print('- step %d L2: %1.5f %s' % (i, vl2, s))