def setUp(self):
     """
     Set up linearised ODESolver and Res2Bod as a non-linearised ODE.
     """
     prior = stsp.IBM(q=1, dim=4)
     self.solver = linsolver.LinearisedODESolver(prior, filtertype="kalman")
     self.ode = standard_ode.Res2Bod(t0=0.0, tmax=1.2)
 def check_custom_filter_not_implemented(self):
     """
     Custom filter should be an option, yet raise an error.
     """
     with self.assertRaises(NotImplementedError):
         linsolver.LinearisedODESolver(self.working_2d_prior,
                                       filtertype="custom")
Example #3
0
    def setUp(self):
        """
        Set up linear ODE (i.e. one-dim, one parameter) and one evalpt.
        """
        # Set Model Parameters
        odeparam = 1.
        y0, y0_unc = 1.0, 0 
        t0, tmax = 0.0, 1.25

        # Set Method Parameters
        q = 1
        h = 0.1

        # Set up and solve ODE
        ibm = statespace.IBM(q=q, dim=1)
        solver = linsolve.LinearisedODESolver(ibm)
        ivp = linode.LinearODE(t0, tmax, odeparam, y0, y0_unc)
        tsteps, means, __, rhs_parts, uncerts = solver.solve(ivp, stepsize=h)
        self.mean = odesolver.get_trajectory(means, 0, 0)

        # Set up BM and IBM covariance matrices
        evalpt = np.array([tsteps[-1]])
        derdat = (tsteps, rhs_parts, 0.)

        const, jacob = linearisation.compute_linearisation(
            ssm=ibm, initial_value=y0,
            derivative_data=derdat, prdct_tsteps=evalpt)

        # Compute GP Estimation of filter mean at t=tmax
        self.postmean = const + np.dot(jacob[:, 0], odeparam)
Example #4
0
    def test_uncert_not_scalar(self):
        """
        We test whether the uncertainty (third element of derivative_data)
        is only accepted as a scalar.
        """
        # Set Model Parameters
        odeparam = 1.
        y0, y0_unc = 1.0, 0 
        t0, tmax = 0.0, 1.25

        # Set Method Parameters
        q = 1
        h = 0.1

        # Set up and solve ODE
        ibm = statespace.IBM(q=q, dim=1)
        solver = linsolve.LinearisedODESolver(ibm)
        ivp = linode.LinearODE(t0, tmax, odeparam, y0, y0_unc)
        tsteps, means, __, rhs_parts, should_not_work = solver.solve(ivp, stepsize=h)
        self.mean = odesolver.get_trajectory(means, 0, 0)

        # Set up BM and IBM covariance matrices
        evalpt = np.array(tsteps[[-1]])
        with self.assertRaises(TypeError):
            derdat = (tsteps, rhs_parts, should_not_work)
            linearisation.compute_linearisation(ssm=ibm, initial_value=y0,
                                                derivative_data=derdat,
                                                prdct_tsteps=evalpt)
Example #5
0
    def setUp(self):
        """
        Set up Lotka-Volterra ODE (i.e. two-dim, four parameter) and
        multiple (two) evalpts.
        """
        # Set Model Parameters
        odeparam = np.array([0, 1, 1, 2])
        y0, y0_unc = np.ones(2), 0 * np.ones(2)
        t0, tmax = 0.0, 1.25

        # Set Method Parameters
        q = 1
        h = 0.1

        # Set up and solve ODE
        ibm = statespace.IBM(q=q, dim=len(y0))
        solver = linsolve.LinearisedODESolver(ibm)
        ivp = linode.LotkaVolterra(t0, tmax, odeparam, y0, y0_unc)
        tsteps, means, __, rhs_parts, uncerts = solver.solve(ivp, stepsize=h)
        self.mean = odesolver.get_trajectory_multidim(means, [0, 1], 0)

        # Set up BM and IBM covariance matrices
        evalpt = np.array(tsteps[[-1, -10]])
        derdat = (tsteps, rhs_parts, 0.)

        const, jacob = linearisation.compute_linearisation(
            ssm=ibm, initial_value=y0,
            derivative_data=derdat, prdct_tsteps=evalpt)

        # Compute GP Estimation of filter mean at t=tmax
        postmean = const + np.dot(jacob, odeparam)
        self.postmean = postmean.reshape((2, 2))
 def check_nonexistant_filterkey(self):
     """
     Entering any filterkey other than 'kalman', 'particle'
     or 'custom' raises AssertionError.
     """
     with self.assertRaises(NameError):
         linsolver.LinearisedODESolver(self.working_2d_prior,
                                       filtertype="rubbish")
 def setUp(self):
     """
     Set up linear ode and solve with stepsize h = 0.1.
     """
     prior = stsp.IBM(q=1, dim=1)
     self.solver = linsolver.LinearisedODESolver(prior, filtertype="kalman")
     self.ode = linode.LinearODE(t0=0.0, tmax=1.2, params=2.0, initval=4.1)
     self.h = 0.1
     output = self.solver.solve(self.ode, self.h)
     self.tsteps, self.means, self.stdevs, __, __ = output
 def setUp(self):
     """
     Set up linear ODE and linearised ODESolver.
     """
     prior = stsp.IBM(q=1, dim=1)
     solver = linsolver.LinearisedODESolver(prior, filtertype="kalman")
     ode = linode.LinearODE(t0=0.0, tmax=1.2, params=2.0, initval=4.1)
     h = 0.1
     output = solver.solve(ode, h)
     __, __, __, self.rhs_parts, self.uncert = output
 def test_inconsistent_prior_and_ssm(self):
     """
     Prior uses dim=2, so a scalar ODE should raise an AssertionError.
     """
     solver = linsolver.LinearisedODESolver(self.working_2d_prior,
                                            self.working_filtertype)
     wrong_dimensional_ode = linode.LinearODE(t0=0.,
                                              tmax=1.,
                                              params=1.123,
                                              initval=1.)
     with self.assertRaises(AssertionError):
         solver.solve(wrong_dimensional_ode, stepsize=0.1)
 def setUp(self):
     """
     Set up LotkaVolterra ODE and LinearisedODESolver.
     """
     prior = stsp.IBM(q=1, dim=2)
     solver = linsolver.LinearisedODESolver(prior, filtertype="kalman")
     params = [0.1, 0.2, 0.3, 0.4]
     ode = linode.LotkaVolterra(t0=0.0,
                                tmax=1.2,
                                params=params,
                                initval=np.ones(2))
     h = 0.1
     output = solver.solve(ode, h)
     __, __, __, self.rhs_parts, self.uncert = output
Example #11
0
    np.random.seed(1)

    # Set Model Parameters
    initial_value = np.array([20, 20])
    initial_time, end_time = 0.0, 5.0
    ivpvar = 1e-2
    thetatrue = np.array([1.0, 0.1, 0.1, 1.0])
    ivp = linode.LotkaVolterra(initial_time,
                               end_time,
                               params=thetatrue,
                               initval=initial_value)

    # Set Method Parameters
    h_for_data = (end_time - initial_time) / 10000
    h = (end_time - initial_time) / 200
    solver = linsolver.LinearisedODESolver(statespace.IBM(q=1, dim=2))
    ipdata = create_data(solver, ivp, thetatrue, h_for_data, ivpvar)
    iplklhd = ip.InvProblemLklhd(ipdata, ivp, solver, h, with_jacob=True)

    # Sample from posteriors
    niter = 50
    init_theta = np.array([0.8, 0.2, 0.05, 1.1])
    samples_ham, probs_ham = hamiltonian(niter,
                                         iplklhd,
                                         init_theta,
                                         stepsize=0.2,
                                         nsteps=6)
    samples_lang, probs_lang = langevin(niter,
                                        iplklhd,
                                        init_theta,
                                        stepsize=1.2)
Example #12
0
np.random.seed(1)

# Set Model Parameters
initial_value = 2.0
initial_time = 0.1
end_time = 1.1
ivpnoise = 0.01
thetatrue = 0.25

# Set Method Parameters
q = 1
h = 0.2
nsamps = 25
init_theta = 0.99 * np.ones(1)
ibm = statespace.IBM(q=q, dim=1)
solver = linsolver.LinearisedODESolver(ibm)
pwidth = 0.004

# Create Data and Jacobian
ivp = linode.LinearODE(initial_time,
                       end_time,
                       params=thetatrue,
                       initval=initial_value,
                       initval_unc=0.0)
evalpt, data = create_data(solver, ivp, thetatrue, 1e-04, ivpnoise)
tsteps, __, __, __, __ = solver.solve(ivp, stepsize=h)
evalpt = np.array(tsteps[[-1]])
kernel_prefactor = linearisation.compute_kernel_prefactor(
    ibm, 0.0, tsteps, evalpt)

# Sample states from Markov chain