Example #1
0
 def test_anonymize_median_single_many(self):
     expected_values = np.array([87.5864551, 89.701297, 86.4519884])
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_median(87.0, size=3)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #2
0
 def test_anonymize_median_multiple(self):
     expected_values = np.array([87.5864551, 437.701297])
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_median([87.0, 435.0])
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #3
0
 def test_anonymize_median_single(self):
     expected_value = 87.58645513850368
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_median(87.0)
     np.testing.assert_almost_equal(anonymized, expected_value)
Example #4
0
    def sum(cls, data, epsilon, axis=None):
        """
        Performs the sum operation and anonymizes the value(s) using the provided
        privacy budget.

        Parameters
        ----------
        data : list|ndarray
            The data to retrieve the sum value(s) from.
        epsilon : float
            The privacy budget.
        [axis] : int|tuple
            Axis or tuple of axes along which to obtain the sum value(s).

        Returns
        -------
        float|ndarray
            The anonymized sum value(s).

        """
        lower = np.min(data, axis=axis)
        upper = np.max(data, axis=axis)
        value = np.sum(data, axis=axis)
        if np.isscalar(lower):
            anonymized = DiffPrivLaplaceMechanism.anonymize_sum_with_budget(
                value, lower, upper, epsilon)
        else:
            size = lower.size
            anonymized = np.zeros(size)
            for index in range(0, size):
                anonymized[
                    index] = DiffPrivLaplaceMechanism.anonymize_sum_with_budget(
                        value[index], lower[index], upper[index], epsilon)

        return anonymized
Example #5
0
 def test_anonymize_proportion_single(self):
     expected_value = 87.05864551385037
     n = 10.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_proportion(87.0, n)
     np.testing.assert_almost_equal(anonymized, expected_value)
Example #6
0
 def test_anonymize_proportion_multiple(self):
     expected_values = np.array([87.0586455, 435.2701297])
     n = 10.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_proportion([87.0, 435.0], n)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #7
0
 def test_anonymize_proportion_single_many(self):
     expected_values = np.array([87.0586455, 87.2701297, 86.9451988])
     n = 10.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_proportion(87.0, n, size=3)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #8
0
 def test_anonymize_sum_multiple(self):
     expected_values = np.array([145.0590587, 702.4284063])
     lower = 10.0
     upper = 99.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_sum([87.0, 435.0], lower, upper)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #9
0
 def test_anonymize_sum_single_many(self):
     expected_values = np.array([145.0590587, 354.4284063, 32.746848])
     lower = 10.0
     upper = 99.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_sum(87.0, lower, upper, size=3)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #10
0
 def test_anonymize_sum_single(self):
     expected_value = 145.05905871186388
     lower = 10.0
     upper = 99.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_sum(87.0, lower, upper)
     np.testing.assert_almost_equal(anonymized, expected_value)
Example #11
0
 def test_anonymize_mean_multiple(self):
     expected_values = np.array([87.5219451, 437.4041544])
     lower = 10.0
     upper = 99.0
     n = 100.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_mean([87.0, 435.0], lower, upper, n)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #12
0
 def test_anonymize_mean_single_many(self):
     expected_values = np.array([87.5219451, 89.4041544, 86.5122696])
     lower = 10.0
     upper = 99.0
     n = 100.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_mean(87.0, lower, upper, n, size=3)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #13
0
 def test_anonymize_mean_single(self):
     expected_value = 87.52194507326827
     lower = 10.0
     upper = 99.0
     n = 100.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_mean(87.0, lower, upper, n)
     np.testing.assert_almost_equal(anonymized, expected_value)
Example #14
0
 def test_anonymize_variance_single(self):
     expected_value = 133.45311152087612
     lower = 10.0
     upper = 99.0
     n = 100.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_variance(87.0, lower, upper, n)
     np.testing.assert_almost_equal(anonymized, expected_value)
Example #15
0
 def test_anonymize_variance_multiple(self):
     expected_values = np.array([133.4531115, 648.969738])
     lower = 10.0
     upper = 99.0
     n = 100.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_variance([87.0, 435.0], lower, upper,
                                                n)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #16
0
 def test_anonymize_variance_single_many(self):
     expected_values = np.array([133.4531115, 300.969738, 43.5919983])
     lower = 10.0
     upper = 99.0
     n = 100.0
     epsilon = 1.0
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.set_seed()
     anonymized = anonymizer.anonymize_variance(87.0,
                                                lower,
                                                upper,
                                                n,
                                                size=3)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #17
0
 def test_anonymize_max_with_budget_single_many(self):
     expected_values = np.array([87.5864551, 89.701297, 86.4519884])
     epsilon = 1.0
     self.set_seed()
     anonymized = DiffPrivLaplaceMechanism.anonymize_max_with_budget(
         87.0, epsilon, size=3)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #18
0
 def test_anonymize_max_with_budget_multiple(self):
     expected_values = np.array([87.5864551, 437.701297])
     epsilon = 1.0
     self.set_seed()
     anonymized = DiffPrivLaplaceMechanism.anonymize_max_with_budget(
         [87.0, 435.0], epsilon)
     np.testing.assert_almost_equal(anonymized, expected_values)
Example #19
0
 def test_anonymize_median_with_budget_single(self):
     expected_value = 87.58645513850368
     epsilon = 1.0
     self.set_seed()
     anonymized = DiffPrivLaplaceMechanism.anonymize_median_with_budget(
         87.0, epsilon)
     np.testing.assert_almost_equal(anonymized, expected_value)
Example #20
0
 def test_create_proportion_anonymizer(self):
     epsilon = 0.1
     n = 10.0
     anonymizer = DiffPrivLaplaceMechanism.create_proportion_anonymizer(
         epsilon, n)
     self.assertIsInstance(anonymizer, DiffPrivProportionAnonymizer)
     self.assertEqual(anonymizer.epsilon, epsilon)
     self.assertEqual(anonymizer.n, n)
Example #21
0
 def test_create_sum_anonymizer(self):
     epsilon = 1.0
     lower = 10.0
     upper = 99.0
     anonymizer = DiffPrivLaplaceMechanism.create_sum_anonymizer(
         epsilon, lower, upper)
     self.assertIsInstance(anonymizer, DiffPrivSumAnonymizer)
     self.assertEqual(anonymizer.epsilon, epsilon)
     self.assertEqual(anonymizer.lower, lower)
     self.assertEqual(anonymizer.upper, upper)
Example #22
0
    def proportion(cls,
                   data,
                   epsilon,
                   condition=None,
                   axis=None,
                   postprocess=True):
        """
        Performs the proportion operation and anonymizes the value(s) using the
        provided privacy budget.

        The operation counts non-zero or non-False values. When a condition
        function is provided, it is invoked so that the data can be transformed
        before counting. Afterwords, the proportion is calculated using the total
        amount of values.

        Parameters
        ----------
        data : list|ndarray
            The data to retrieve the proportion(s) from.
        epsilon : float
            The privacy budget.
        [condition] : function
            A condition function that receives the data as a parameter and returns
            a list or ndarray of the same size in which for each element is either
            a zero or False when it should not be counted and non-zero or True when
            it should.
        [axis] : int|tuple
            Axis or tuple of axes along which to count non-zeros or non-False value(s).
        [postprocess] : bool
            Indicates whether or not to post-process the proportion values so that the
            returned value is within the [0.0, 1.0] range.

        Returns
        -------
        float|ndarray
            The anonymized count(s).

        """
        n = np.size(data, axis=axis)
        if condition:
            data = condition(data)

        value = np.count_nonzero(data, axis=axis)
        value = np.divide(value, n)
        anonymized = DiffPrivLaplaceMechanism.anonymize_proportion_with_budget(
            value, n, epsilon)

        if postprocess:
            anonymized = np.clip(anonymized, 0.0, 1.0)

        return anonymized
Example #23
0
    def min(cls, data, epsilon, axis=None):
        """
        Performs the min operation and anonymizes the value(s) using the provided
        privacy budget.

        Parameters
        ----------
        data : list|ndarray
            The data to retrieve the min value(s) from.
        epsilon : float
            The privacy budget.
        [axis] : int|tuple
            Axis or tuple of axes along which to obtain the min value(s).

        Returns
        -------
        float|ndarray
            The anonymized min value(s).

        """
        value = np.min(data, axis=axis)
        anonymized = DiffPrivLaplaceMechanism.anonymize_min_with_budget(
            value, epsilon)
        return anonymized
Example #24
0
 def test_epsilon_getter(self):
     epsilon = 0.1
     anonymizer = DiffPrivLaplaceMechanism(epsilon)
     self.assertEqual(anonymizer.epsilon, epsilon)
Example #25
0
 def test_create_median_anonymizer(self):
     epsilon = 0.1
     anonymizer = DiffPrivLaplaceMechanism.create_median_anonymizer(epsilon)
     self.assertIsInstance(anonymizer, DiffPrivMedianAnonymizer)
     self.assertEqual(anonymizer.epsilon, epsilon)