def test_do_nothing(self): X = np.random.rand(10, 5) dp_ss = StandardScaler(bounds=(0, 1), epsilon=1, with_std=False, with_mean=False) dp_ss.fit(X) self.assertIsNotNone(dp_ss)
def test_inf_epsilon(self): X = np.random.rand(10, 5) dp_ss = StandardScaler(bounds=(0, 1), epsilon=float("inf")) dp_ss.fit(X) sk_ss = sk_pp.StandardScaler() sk_ss.fit(X) self.assertTrue( np.allclose(dp_ss.mean_, sk_ss.mean_), "Arrays %s and %s should be the same" % (dp_ss.mean_, sk_ss.mean_)) self.assertTrue( np.allclose(dp_ss.var_, sk_ss.var_), "Arrays %s and %s should be the same" % (dp_ss.var_, sk_ss.var_)) self.assertTrue(np.all(dp_ss.n_samples_seen_ == sk_ss.n_samples_seen_))
def test_accountant(self): from diffprivlib.accountant import BudgetAccountant acc = BudgetAccountant() X = np.random.rand(10, 5) ss = StandardScaler(epsilon=1, bounds=(0, 1), accountant=acc) ss.fit(X) self.assertEqual((1, 0), acc.total()) with BudgetAccountant(1.5, 0) as acc2: ss = StandardScaler(epsilon=1, bounds=(0, 1)) ss.fit(X) self.assertEqual((1, 0), acc2.total()) with self.assertRaises(BudgetError): ss.fit(X) self.assertEqual((1, 0), acc.total())
def test_similar_results(self): global_seed(314159) X = np.random.rand(100000, 5) dp_ss = StandardScaler(bounds=(0, 1), epsilon=float("inf")) dp_ss.fit(X) sk_ss = sk_pp.StandardScaler() sk_ss.fit(X) self.assertTrue( np.allclose(dp_ss.mean_, sk_ss.mean_, rtol=1, atol=1e-4), "Arrays %s and %s should be close" % (dp_ss.mean_, sk_ss.mean_)) self.assertTrue( np.allclose(dp_ss.var_, sk_ss.var_, rtol=1, atol=1e-4), "Arrays %s and %s should be close" % (dp_ss.var_, sk_ss.var_)) self.assertTrue(np.all(dp_ss.n_samples_seen_ == sk_ss.n_samples_seen_))
def test_functionality(self): X = np.random.rand(10, 5) ss = StandardScaler(bounds=(0, 1)) ss.fit(X) self.assertIsNotNone(ss.transform(X)) self.assertIsNotNone(ss.inverse_transform(X)) self.assertIsNotNone(ss.fit_transform(X))
def test_sample_weights(self): X = np.random.rand(10, 5) dp_ss = StandardScaler(bounds=(0, 1), epsilon=1) try: self.assertWarns(DiffprivlibCompatibilityWarning, dp_ss.fit, X, sample_weight=1) except TypeError: pass
def test_refit(self): X = np.random.rand(10, 5) dp_ss = StandardScaler(bounds=(0, 1), epsilon=1) dp_ss.fit(X) dp_ss.partial_fit(X) self.assertIsNotNone(dp_ss)
def test_different_results(self): X = np.random.rand(10, 5) ss1 = StandardScaler(bounds=(0, 1)) ss1.fit(X) ss2 = StandardScaler(bounds=(0, 1)) ss2.fit(X) self.assertFalse( np.allclose(ss1.mean_, ss2.mean_), "Arrays %s and %s should be the same" % (ss1.mean_, ss2.mean_)) self.assertFalse( np.allclose(ss1.var_, ss2.var_), "Arrays %s and %s should be the same" % (ss1.var_, ss2.var_))
def test_no_range(self): X = np.random.rand(10, 5) ss = StandardScaler() with self.assertWarns(PrivacyLeakWarning): ss.fit(X)
def test_not_none(self): ss = StandardScaler() self.assertIsNotNone(ss)