def test02(self):
        # Test QPSK sync
        M = 4
        theta = 0
        loop_bw = cmath.pi/100.0
        fmin = -0.5
        fmax = 0.5
        mu = 0.5
        gain_mu = 0.01
        omega = 2
        gain_omega = 0.001
        omega_rel = 0.001

        self.test = digital.mpsk_receiver_cc(M, theta, loop_bw,
                                             fmin, fmax, mu, gain_mu,
                                             omega, gain_omega,
                                             omega_rel)

        data = 10000*[complex( 0.707,  0.707),
                     complex(-0.707,  0.707), 
                     complex(-0.707, -0.707), 
                     complex( 0.707, -0.707)]
        data = [0.5*d for d in data]
        self.src = gr.vector_source_c(data, False)
        self.snk = gr.vector_sink_c()

        # pulse shaping interpolation filter
        nfilts = 32
        excess_bw = 0.35
        ntaps = 11 * int(omega*nfilts)
        rrc_taps0 = filter.firdes.root_raised_cosine(
            nfilts, nfilts, 1.0, excess_bw, ntaps)
        rrc_taps1 = filter.firdes.root_raised_cosine(
            1, omega, 1.0, excess_bw, 11*omega)
        self.rrc0 = filter.pfb_arb_resampler_ccf(omega, rrc_taps0)
        self.rrc1 = filter.fir_filter_ccf(1, rrc_taps1)

        self.tb.connect(self.src, self.rrc0, self.rrc1, self.test, self.snk)
        self.tb.run()
        
        expected_result = 10000*[complex(-0.5, +0.0), complex(+0.0, -0.5),
                                 complex(+0.5, +0.0), complex(+0.0, +0.5)]

        # get data after a settling period
        dst_data = self.snk.data()[200:]

        # Only compare last Ncmp samples
        Ncmp = 1000
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp - 1:-1]
        dst_data = dst_data[len_d - Ncmp:]

        #for e,d in zip(expected_result, dst_data):
        #    print "{0:+.02f}  {1:+.02f}".format(e, d)

        self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)
    def test02(self):
        # Test QPSK sync
        M = 4
        theta = 0
        loop_bw = 2 * cmath.pi / 100.0
        fmin = -0.5
        fmax = 0.5
        mu = 0.25
        gain_mu = 0.01
        omega = 2
        gain_omega = 0.001
        omega_rel = 0.001

        self.test = digital_swig.mpsk_receiver_cc(M, theta, loop_bw, fmin,
                                                  fmax, mu, gain_mu, omega,
                                                  gain_omega, omega_rel)

        data = 1000 * [
            complex(0.707, 0.707),
            complex(0.707, 0.707),
            complex(-0.707, 0.707),
            complex(-0.707, 0.707),
            complex(-0.707, -0.707),
            complex(-0.707, -0.707),
            complex(0.707, -0.707),
            complex(0.707, -0.707)
        ]
        self.src = gr.vector_source_c(data, False)
        self.snk = gr.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        expected_result = 1000 * [
            complex(0, -1.0),
            complex(1.0, 0),
            complex(0, 1.0),
            complex(-1.0, 0)
        ]
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 100
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp:]
        dst_data = dst_data[len_d - Ncmp:]

        #for e,d in zip(expected_result, dst_data):
        #    print e, d

        self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)
Example #3
0
    def test01(self):
        # Test BPSK sync
        M = 2
        theta = 0
        loop_bw = cmath.pi / 100.0
        fmin = -0.5
        fmax = 0.5
        mu = 0.5
        gain_mu = 0.01
        omega = 2
        gain_omega = 0.001
        omega_rel = 0.001

        self.test = digital.mpsk_receiver_cc(M, theta, loop_bw, fmin, fmax, mu,
                                             gain_mu, omega, gain_omega,
                                             omega_rel)

        data = 10000 * [complex(1, 0), complex(-1, 0)]
        #data = [2*random.randint(0,1)-1 for x in xrange(10000)]
        self.src = blocks.vector_source_c(data, False)
        self.snk = blocks.vector_sink_c()

        # pulse shaping interpolation filter
        nfilts = 32
        excess_bw = 0.35
        ntaps = 11 * int(omega * nfilts)
        rrc_taps0 = filter.firdes.root_raised_cosine(nfilts, nfilts, 1.0,
                                                     excess_bw, ntaps)
        rrc_taps1 = filter.firdes.root_raised_cosine(1, omega, 1.0, excess_bw,
                                                     11 * omega)
        self.rrc0 = filter.pfb_arb_resampler_ccf(omega, rrc_taps0)
        self.rrc1 = filter.fir_filter_ccf(1, rrc_taps1)

        self.tb.connect(self.src, self.rrc0, self.rrc1, self.test, self.snk)
        self.tb.run()

        expected_result = [0.5 * d for d in data]
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 1000
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp - 1:-1]
        dst_data = dst_data[len_d - Ncmp:]

        #for e,d in zip(expected_result, dst_data):
        #    print "{0:+.02f}  {1:+.02f}".format(e, d)

        self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)
Example #4
0
    def test02 (self):
        # Test QPSK sync
        M = 4
        theta = 0
        loop_bw = 2*cmath.pi/100.0
        fmin = -0.5
        fmax = 0.5
        mu = 0.25
        gain_mu = 0.01
        omega = 2
        gain_omega = 0.001
        omega_rel = 0.001

        self.test = digital_swig.mpsk_receiver_cc(M, theta, loop_bw,
                                                  fmin, fmax, mu, gain_mu,
                                                  omega, gain_omega,
                                                  omega_rel)

        data = 1000*[complex( 0.707,  0.707), complex( 0.707,  0.707),
                     complex(-0.707,  0.707), complex(-0.707,  0.707),
                     complex(-0.707, -0.707), complex(-0.707, -0.707),
                     complex( 0.707, -0.707), complex( 0.707, -0.707)]
        self.src = gr.vector_source_c(data, False)
        self.snk = gr.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()
        
        expected_result = 1000*[complex(0, -1.0), complex(1.0, 0),
                                complex(0, 1.0), complex(-1.0, 0)]
        dst_data = self.snk.data()

        # Only compare last Ncmp samples
        Ncmp = 100
        len_e = len(expected_result)
        len_d = len(dst_data)
        expected_result = expected_result[len_e - Ncmp:]
        dst_data = dst_data[len_d - Ncmp:]

        #for e,d in zip(expected_result, dst_data):
        #    print e, d

        self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 1)