Example #1
0
 def __init__(self, name, program):
     self.program = program
     self.name = name
     self.output = []
     self.switch = {
         1: self.opt1,
         2: self.opt2,
         3: self.opt3,
         4: self.opt4,
         5: self.opt5,
         6: self.opt6,
         7: self.opt7,
         8: self.opt8,
         9: self.opt9,
         99: self.opt99
     }
     self.inputp = 0
     self.halt = False
     self.relative_base = 0
     self.memory = {}
     self.retpt = 0
     self.new_position = (0, 0)
     self.position = (0, 0)
     self.area = {(0, 0): 'X'}
     self.graph = Graph()
     self.graph.add_node((0, 0))
     self.oxygen = (0, 0)
     self.unexplored = set()
     self.explored = set([(0, 0)])
     self.graph.add_node((0, 0))
     self.path = []
Example #2
0
    def make_graph(self):

        con = pymysql.connect(host='localhost',
                              user='******',
                              password='******',
                              db='drive2',
                              charset='utf8')

        curs = con.cursor()

        graph = Graph()
        sql = "select nodeid from drive2.c1_node"
        sql2 = "select tonode, length, format(speed,0) from drive2.a3_link, jcm_drive.jcm_a3_link where fromnode = "

        curs.execute(sql)

        rows = curs.fetchall()
        for i in rows:
            nodeid = list(map(lambda x: x, i))
            curs.execute(sql2 + "'" + nodeid[0] + "';")

            rows = curs.fetchall()

            if rows is None:
                continue
            else:
                for item in list(rows):
                    cost = item[1] / int(item[2])
                    graph.add_edge(i[0], item[0], cost)

        con.close()
        return graph
Example #3
0
def find_conversions(source, target, versions_graph):
    """
    This finds the minimum number of version upgrades required to reach the target version.
    :param source: source version
    :param target: target version
    :param versions_graph: graph to fetch update path from
    :return: list of conversions in order of execution
    """
    graph = Graph()
    for source_version, target_version in versions_graph.query(
            """SELECT ?source_version ?target_version{
                        ?source_version version:convertsTo ?target_version .
    }"""):
        graph.add_edge(str(source_version), str(target_version),
                       {"conversions": 1})

    # Find the shortest path
    res = find_path(
        graph,
        str(source),
        str(target),
        cost_func=lambda u, v, e, prev_e: e["conversions"],
    )

    # Create and return the conversions
    conversions = []
    print(" -> ".join(res.nodes))
    current = source
    for node in res.nodes:
        conversions.append((current, node))
        current = node
    return conversions[1:]
Example #4
0
def crea_matrice_distanze(dist):
    initial_matr = np.array(dist)
    print initial_matr
    matr = initial_matr.copy()
    # dict_matr = {(partenza, arrivi): lunghezza for partenza, arrivi in enumerate(dist) for arrivo, lunghezza in
    #              enumerate(arrivi)}
    graph = Graph()

    for partenza, arrivi in enumerate(dist):
        for arrivo, lunghezza in enumerate(arrivi):
            if lunghezza >= 0:
                graph.add_edge(partenza, arrivo, {'cost': lunghezza})
    cost_func = lambda u, v, e, prev_e: e['cost']

    for partenza, arrivi in enumerate(dist):
        for arrivo in range(len(arrivi)):
            if partenza == arrivo:
                matr[partenza, arrivo] = -1
            else:
                try:
                    min_dist = find_path(graph,
                                         partenza,
                                         arrivo,
                                         cost_func=cost_func)[3]
                    matr[partenza, arrivo] = min_dist
                except Exception as e:
                    matr[partenza, arrivo] = -1
    print "matr ditanze\n", matr
    return matr
Example #5
0
    def graph3(self):
        graph = Graph({
            'a': {
                'b': 10,
                'c': 100,
                'd': 1
            },
            'b': {
                'c': 10
            },
            'd': {
                'b': 1,
                'e': 1
            },
            'e': {
                'f': 1
            },
        })

        graph.add_node('f', {'c': 1})
        graph['f'] = {'c': 1}

        graph.add_edge('f', 'c', 1)
        graph.add_edge('g', 'b', 1)

        nodes = list(graph)
        nodes.sort()
        self.assertEqual(nodes, ['a', 'b', 'd', 'e', 'f', 'g'])

        incoming = graph.get_incoming('c')
        incoming_nodes = list(incoming.keys())
        incoming_nodes.sort()
        self.assertEqual(incoming_nodes, ['a', 'b', 'f'])

        return graph
Example #6
0
def solve(data):
    grid = data

    base = grid
    for j in range(1, 5):
        appendix = base + j
        appendix[appendix > 9] -= 9
        grid = np.concatenate((grid, appendix), axis = 0)

    base = grid
    for i in range(1, 5):
        appendix = base + i
        appendix[appendix > 9] -= 9
        grid = np.concatenate((grid, appendix), axis = 1)

    h, w = np.shape(grid)

    graph = Graph()

    for j in range(0, h):
        for a, b in pairwise(range(0, w)):
            graph.add_edge(j * h + a, j * h + b, grid[j][b])
            graph.add_edge(j * h + b, j * h + a, grid[j][a])

    for i in range(0, w):
        for a, b in pairwise(range(0, h)):
            graph.add_edge(a * h + i, b * h + i, grid[b][i])
            graph.add_edge(b * h + i, a * h + i, grid[a][i])

    return find_path(graph, 0, h * w - 1).total_cost
Example #7
0
def shortestPathAStar(start_ind, goal_ind):

    global R
    # R[0] is the node for the start configuration
    # R[1] is the node for the goal configuration

    # each node has edges in the form: self.edges = [] List of tuples (node_id, dist)
    # loop through our graph and convert it to a nice format for dijkstar
    graph = Graph()
    for node in R:
        for edge in node.edges:
            graph.add_edge(node.id, edge[0], edge[1])

    cfg_array = []

    # catch path not found exception
    try:
        pathinfo = find_path(graph, start_ind, goal_ind)

    except:
        print('Could NOT find a path from start to goal')
        return cfg_array

    # get the configurations from each node in this found path
    for node_id in pathinfo.nodes:
        cfg_array.append(R[node_id].cfg)

    return cfg_array
Example #8
0
def dist_mat(train_mat, test_mat, k):
    # construct a weighted graph
    mat = graph_knn(train_mat, test_mat, k)
    n = mat.shape[0]
    graph = Graph()
    list((graph.add_edge(i, j, {'cost': mat[i, j]})
          for i, j in product(range(n), range(n))
          if i != j and mat[i, j] != max_dis))
    if graph is None:
        return
    cost_func = lambda u, v, e, prev_e: e['cost']
    mat = np.zeros((n, n))

    # the shortest path from node i to node j is the distance between i and j
    def dis(i):
        single_short_path = single_source_shortest_paths(graph,
                                                         i,
                                                         cost_func=cost_func)
        for j in range(n):
            if j != i:
                mat[i, j] = extract_shortest_path(single_short_path, j)
            else:
                mat[i, j] = 0

    list((dis(i) for i in range(n)))
    return mat
Example #9
0
def getSortedMapPathData(mapData: dict) -> dict:
    '''
    获取地图下各节点到目标节点的最短路径数据
    Keyword arguments:
    mapData -- 地图节点数据
    '''
    graph = Graph()
    sortedPathData = {}
    for node in mapData.keys():
        for target in mapData[node]:
            graph.add_edge(node, target, {'cost': mapData[node][target]})
    cost_func = lambda u, v, e, prev_e: e['cost']
    for node in mapData.keys():
        newData = {node: {}}
        for target in mapData.keys():
            if target != node:
                findPathData = find_path(graph,
                                         node,
                                         target,
                                         cost_func=cost_func)
                newData[node].update({
                    target: {
                        "Path": findPathData.nodes[1:],
                        "Time": findPathData.costs
                    }
                })
        sortedPathData.update(newData)
    return sortedPathData
Example #10
0
def get_sorted_map_path_data(map_data: dict) -> dict:
    """
    获取地图下各节点到目标节点的最短路径数据
    Keyword arguments:
    map_data -- 地图节点数据
    """
    graph = Graph()
    sorted_path_data = {}
    for node in map_data.keys():
        for target in map_data[node]:
            graph.add_edge(node, target, {"cost": map_data[node][target]})
    cost_func = lambda u, v, e, prev_e: e["cost"]
    for node in map_data.keys():
        new_data = {node: {}}
        for target in map_data.keys():
            if target != node:
                find_path_data = find_path(graph,
                                           node,
                                           target,
                                           cost_func=cost_func)
                new_data[node].update({
                    target: {
                        "Path": find_path_data.nodes[1:],
                        "Time": find_path_data.costs,
                    }
                })
        sorted_path_data.update(new_data)
    return sorted_path_data
 def findBestPath(self, src, dst):
   graph = Graph()
   for node1 in costBetweenNodes.keys():
     for node2 in costBetweenNodes[node1].keys():
       graph.add_edge(node1, node2, {'cost': costBetweenNodes[node1][node2]})
   cost_func = lambda u, v, e, prev_e: e['cost']
   return find_path(graph, src, dst, cost_func=cost_func).nodes
Example #12
0
def get_sorted_map_path_data(
    map_data: Dict[str, Dict[str, int]]
) -> Dict[str, Dict[str, game_type.TargetPath]]:
    """
    获取地图下各节点到目标节点的最短路径数据
    Keyword arguments:
    map_data -- 地图节点数据 当前节点:可通行节点:所需时间
    Return arguments:
    Dict[int,Dict[int,game_type.TargetPath]] -- 最短路径数据 当前节点:目标节点:路径对象
    """
    graph = Graph()
    sorted_path_data = {}
    for node in map_data.keys():
        for target in map_data[node]:
            graph.add_edge(node, target, {"cost": map_data[node][target]})
    cost_func = lambda u, v, e, prev_e: e["cost"]
    for node in map_data.keys():
        new_data = {node: {}}
        for target in map_data.keys():
            if target != node:
                find_path_data = find_path(graph,
                                           node,
                                           target,
                                           cost_func=cost_func)
                target_path = game_type.TargetPath()
                target_path.path = find_path_data.nodes[1:]
                target_path.time = find_path_data.costs
                new_data[node][target] = target_path
        sorted_path_data.update(new_data)
    return sorted_path_data
Example #13
0
    def dijkstra_planning(self):
        graph = Graph()

        temp_nodes = self.nodes[:]
        temp_nodes.pop(0)
        k = 0
        for i in range(len(self.nodes)):
            k = k + 1
            for j in range(len(temp_nodes)):
                node_a = self.nodes[i]
                node_b = temp_nodes[j]
                if np.linalg.norm(node_a - node_b) != 0:
                    print("add edge:", i, j + k)
                    graph.add_edge(i, j + k, np.linalg.norm(node_a - node_b))
            if temp_nodes:
                temp_nodes.pop(0)

        print("done")

        path = find_path(graph, 1, 3)
        print("path:", path)


# if __name__ == "__main__":
#     test_nodes = [np.array([21, 34]),
#                   np.array([45, 28]),
#                   np.array([76, 14]),
#                   np.array([12, 56]),
#                   np.array([48, 32])]
#
#     motion_planner = Planner(test_nodes)
#     motion_planner.dynamic_programming()
Example #14
0
def solve_graph():
    global maze, maze_cost, pacmanpos, world, goal_state
    graph = Graph()
    for j in range(0, height):
        for i in range(0, width):
            if maze[j][i] != 1:
                #arriba
                if (maze[j-1][i] != 1) and (j-1 > 0):
                    xi = str((j,i))
                    xj = str((j-1,i))
                    c = maze_cost[j-1][i]
                    graph.add_edge(xi,xj,{'cost':c})
                    #print(xi+' - '+xj)
                #abajo
                if (maze[j+1][i] != 1) and (j+1 < height):
                    xi = str((j,i))
                    xj = str((j+1,i))
                    c = maze_cost[j+1][i]
                    graph.add_edge(xi,xj,{'cost':c})
                    #print(xi+' - '+xj)
                #derecha
                if (maze[j][i+1] != 1) and (i+1 < width):
                    xi = str((j,i))
                    xj = str((j,i+1))
                    c = maze_cost[j][i+1]
                    graph.add_edge(xi,xj,{'cost':c})
                    #print(xi+' - '+xj)
                #izquierda
                if (maze[j][i-1] != 1) and (i-1 > 0):
                    xi = str((j,i))
                    xj = str((j,i-1))
                    c = maze_cost[j][i-1]
                    graph.add_edge(xi,xj,{'cost':c})
                    #print(xi+' - '+xj)

    cost_func = lambda u, v, e, prev_e: e['cost']
    pacman = worldToGrid(pacmanpos.pacmanPos.x, pacmanpos.pacmanPos.y)
    start_state = (pacman['y'], pacman['x'])
    #start_state = (25,14)
    # goal_state = closest_bonus()
    # print(goal_state)
    #goal_state = (25,26)
    path = find_path(graph, str(start_state), str(goal_state), cost_func=cost_func)
    # print(path.nodes)
    if len(path.nodes)>1:
        next_state = eval(path.nodes[1])
        aux = (start_state[0]-next_state[0], start_state[1]-next_state[1])
    else:
        print('yuca')
        return 4
    #print(str(start_state)+'  '+str(next_state))
    if aux == (1,0):
        return 0
    if aux == (-1,0):
        return 1
    if aux == (0,-1):
        return 2
    if aux == (0,1):
        return 3
def __close_cycle(node, roundtrip):
    graph = Graph(undirected=True)
    __to_dijkstra(node, graph)
    first_node = roundtrip[0].id
    last_node = roundtrip[-1].id
    path_info = find_path(graph, last_node, first_node)

    return roundtrip + __to_nodes(node, path_info)[1:-2]
Example #16
0
def sol_6_b(data_str):
    orbit_tree = read_orbits(data_str)
    g = Graph()
    for planet in orbit_tree:
        g.add_edge(orbit_tree[planet], planet, 1)
        g.add_edge(planet, orbit_tree[planet], 1)
    path = find_path(g, "YOU", orbit_tree["SAN"])
    return path.total_cost - 1
Example #17
0
 def test_find_path_with_annex(self):
     annex = Graph({1: {2: 1, 3: 0.5}})
     result = find_path(self.graph1, 1, 4, annex=annex)
     nodes, edges, costs, total_cost = result
     self.assertEqual(nodes, [1, 3, 4])
     self.assertEqual(edges, [0.5, 2])
     self.assertEqual(costs, [0.5, 2])
     self.assertEqual(total_cost, 2.5)
Example #18
0
def _get_graph(nets_ids, links):
    graph = Graph()
    for link in links:
        src_connectable_id = link['src_connectable_id']
        dst_connectable_id = link['dst_connectable_id']
        if src_connectable_id in nets_ids and dst_connectable_id in nets_ids:
            graph.add_edge(src_connectable_id, dst_connectable_id, 100)
    return graph
Example #19
0
 def __init__(
     self,
     config: Config,
 ) -> None:
     self.config = config
     self.graph = Graph(
     )  # Graph of possible movements for dijkstar algorithm lib
     self.visibility_matrix = self.visibility_matrix()
     self.move_cost_computer = self.move_cost_computer_class(config)
Example #20
0
def dijkstra(d):
    g = Graph()
    for i in range(len(d)):
        for j in range(len(d[i])):
            dirs = ((i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1))
            for x, y in dirs:
                if 0 <= x < len(d) and 0 <= y < len(d[i]):
                    g.add_edge((i, j), (x, y), d[x][y])
    return find_path(g, (0, 0), (len(d) - 1, len(d[0]) - 1)).total_cost
Example #21
0
def get_routes(name_num, point1, point2):
    global_graph = Graph()
    loc_name = get_loc_name(name_num)
    global_graph = global_graph.load('./djicstra_graph/{}'.format(loc_name))
    graph_route = find_path(global_graph, point1, point2).nodes
    final_list = list()
    for elem in graph_route:
        final_list.append((get_position_name(name_num, elem)))
    return (final_list)
Example #22
0
    def graph_search(self):
        # set up the graph
        graph = Graph()
        self.nodes = 0
        self.total_cost = 0
        # add edges
        for i in range(len(self.TE)):
            # pdb.set_trace()
            edge = self.TE[i]
            dist = math.sqrt((edge[0][0] - edge[1][0])**2 +
                             (edge[0][1] - edge[1][1])**2)
            # pdb.set_trace()
            # find vertex from self.V that matches the edges
            vertex1 = self.TV.index(edge[0])
            vertex2 = self.TV.index(edge[1])
            # pdb.set_trace()
            graph.add_edge(vertex1, vertex2, dist)
        # pdb.set_trace()
        temp = find_path(graph, 0, len(self.TV) - 1)
        self.nodes = temp[0]
        self.total_cost = temp[3]

        # now that we have the final path of the robot, we need to extract the ideal robot positions
        # interpolate all of the vertices to make a series of points that the robot can follow
        self.robot_positions = []
        # iterate over each node in the final path and connect between them
        for i in range(len(self.nodes) - 1):
            # take the first and second nodes
            from_node = self.TV[self.nodes[i]]
            to_node = self.TV[self.nodes[i + 1]]

            # take each edge and interpolate a distance equivalent 1/10th of the robot speed per second
            diff_x = to_node[0] - from_node[0]
            diff_y = to_node[1] - from_node[1]
            dist_speed = self.speed * 1 / 10  # m/s * s = m
            # now find number of points from distance between points and speed
            dist_covered = math.sqrt(diff_x**2 + diff_y**2)
            num_points = round(dist_covered / dist_speed)
            # interpolate using these points
            x_int = from_node[0]
            y_int = from_node[1]
            interpolateds = [x_int, y_int]
            for i in range(num_points):
                # append the robot positions
                self.robot_positions.append(interpolateds)
                # add the points in by moving the direction amount calculated in x and y
                x_int = interpolateds[0] + diff_x / num_points
                y_int = interpolateds[1] + diff_y / num_points
                interpolateds = [x_int, y_int]

            # append goal
        if self.solution_found == 1:
            self.robot_positions.append(self.qgoal)
            # self.robot_positions.append(np.linspace(edge[0],edge[1], num = self.speed/50,endpoint=True,retstep=True))

        return self.nodes, self.total_cost
Example #23
0
def graph_gen(
    df_edge
):  #génère un graph simple des liens entre les tables sans tenir compte des colones
    graph = Graph()
    for x in df_edge.index:
        graph.add_edge(df_edge.loc[x, 'table_FK_id'],
                       df_edge.loc[x, 'tablePK_id'], {'cost': 1})
        graph.add_edge(df_edge.loc[x, 'tablePK_id'],
                       df_edge.loc[x, 'table_FK_id'], {'cost': 1})
    return graph
 def __init__(self, addr, heartbeatTime):
     """TODO: add your own class fields and initialization code here"""
     Router.__init__(self, addr)  # initialize superclass - don't remove
     self.heartbeatTime = heartbeatTime
     self.last_time = 0
     self.G = Graph(undirected=True)
     self.SeqNum = {}
     self.Neighbours = {
     }  #Dictionary with key as address and cost and seqnum as values
     self.Curr_Seq = 0
Example #25
0
 def test_initialise_dijk_grid_with_no_blocks(self):
     self.grid.width, self.grid.height, self.grid.blocks = 2, 2, []
     self.grid.initialise_dijk_grid()
     test_grid = Graph()
     for i in range(2):
         test_grid.add_edge((i, 0), (i, 1), 1)
         test_grid.add_edge((i, 1), (i, 0), 1)
         test_grid.add_edge((0, i), (1, i), 1)
         test_grid.add_edge((1, i), (0, i), 1)
     self.assertEqual(self.grid.dijk_grid, test_grid)
Example #26
0
def graph_gen_col(
    df_edge
):  #fonction créant le graphique à partir du tableau des contraintes relationnel
    graph = Graph()
    for x in df_edge.index:
        graph.add_edge(
            df_edge.loc[x, 'referenced_table_col'],
            df_edge.loc[x, 'parent_table_col'],
            {'cost': 1})  #ajoute le lien entre les 2 tables relié dans un sens
        graph.add_edge(
            df_edge.loc[x, 'parent_table_col'],
            df_edge.loc[x, 'referenced_table_col'],
            {'cost': 1
             })  #ajoute le lien entre les 2 tables relié dans l'autre sens
        if df_edge.loc[
                x,
                'referenced_column_id'] == 1:  # col id  = 1 correspond a une clef primaire
            a1 = df_edge[(
                df_edge['table_FK_id'] == df_edge.loc[x, 'table_FK_id']
            )]['referenced_column_id'].unique().tolist(
            )  #crée des liens entre la clef primaire d'une table et toutes les colones ayant une contrainte référentiel avec cette table
            a2 = df_edge[(df_edge['tablePK_id'] == df_edge.loc[x,
                                                               'table_FK_id']
                          )]['parent_colum_id'].unique().tolist()
            a = sorted(uniquel(a1 + a2))[1:]
            if a:
                for i in a:
                    graph.add_edge(
                        df_edge.loc[x, 'referenced_table_col'],
                        int(df_edge.loc[x, 'table_FK_id'].astype(str) +
                            "0000" + str(i)),
                        {'cost': 1
                         })  #ajoute les edges avec la lsite crée plus haut
                    graph.add_edge(
                        int(df_edge.loc[x, 'table_FK_id'].astype(str) +
                            "0000" + str(i)),
                        df_edge.loc[x, 'referenced_table_col'], {'cost': 1})
        if df_edge.loc[x, 'parent_colum_id'] == 1:
            b1 = df_edge[(df_edge['tablePK_id'] == df_edge.loc[x, 'tablePK_id']
                          )]['referenced_column_id'].unique().tolist()
            b2 = df_edge[(df_edge['table_FK_id'] == df_edge.loc[x,
                                                                'tablePK_id']
                          )]['parent_colum_id'].unique().tolist()
            b = sorted(uniquel(b1 + b2))[1:]
            if b:
                for i in b:
                    graph.add_edge(
                        df_edge.loc[x, 'parent_table_col'],
                        int(df_edge.loc[x, 'tablePK_id'].astype(str) + "0000" +
                            str(i)), {'cost': 1})
                    graph.add_edge(
                        int(df_edge.loc[x, 'tablePK_id'].astype(str) + "0000" +
                            str(i)), df_edge.loc[x, 'parent_table_col'],
                        {'cost': 1})
    return graph
Example #27
0
 def init(cls):
     """ set up the router using the already loaded network """
     cls.graph = Graph()
     for edge in Network.routing_edges:
         cls.graph.add_edge(
             edge.from_node.getID(), edge.to_node.getID(), {
                 'length': edge.length,
                 'maxSpeed': edge.max_speed,
                 'lanes': len(edge.lanes),
                 'edgeID': edge.id
             })
Example #28
0
class Dijkstra:

    graph = Graph()
    graph.add_edge(1, 2, {'cost': 1})
    graph.add_edge(2, 3, {'cost': 2})

    def getdijkstra(x, graph, nodeList):
        cost_func = lambda u, v, e, prev_e: e['cost']
        for n in nodeList:
            if n is not x:
                print(find_path(graph, x, n, cost_func=cost_func))
Example #29
0
 def test_initialise_dijk_grid_simple(self):
     self.grid.width, self.grid.height, self.grid.blocks = 2, 2, [(1, 1)]
     self.grid.initialise_dijk_grid()
     test_grid = Graph()
     for i in range(2):
         test_grid.add_edge((i, 0), (i, 1), 1)
         test_grid.add_edge((i, 1), (i, 0), 1)
         test_grid.add_edge((0, i), (1, i), 1)
         test_grid.add_edge((1, i), (0, i), 1)
     test_grid.remove_node((1, 1))
     self.assertEqual(self.grid.dijk_grid, test_grid)
Example #30
0
 def __init__(self, addr, heartbeatTime):
     """TODO: add your own class fields and initialization code here"""
     Router.__init__(self, addr)  # initialize superclass - don't remove
     self.heartbeatTime = heartbeatTime
     self.last_time = 0
     # Hints: initialize local state
     self.link_state = {}  #APNA LINK STATE
     self.link_state_local = {}  #BAKI SUB KA LINK STATE
     self.sequence_number = 0  #SEND KARTAY WAKT SEQ NUM
     self.check_sequence_number = {}  #RECIEVE KARTAY WAKT SEQ NUM
     self.network_graph = Graph(undirected=True)  #GRAPH
     self.forwarding_table = {}  #FRWD TABLE