def generate_graph_node(self, start_x, start_y, goal_x, goal_y, obstacles):

        # add start and goal as nodes
        nodes = [DijkstraSearch.Node(start_x, start_y),
                 DijkstraSearch.Node(goal_x, goal_y, 0, None)]

        # add vertexes in configuration space as nodes
        for obstacle in obstacles:

            cvx_list, cvy_list = self.calc_vertexes_in_configuration_space(
                obstacle.x_list, obstacle.y_list)

            for (vx, vy) in zip(cvx_list, cvy_list):
                nodes.append(DijkstraSearch.Node(vx, vy))

        for node in nodes:
            plt.plot(node.x, node.y, "xr")

        return nodes
    def planning(self, sx, sy, gx, gy, ox, oy, robot_radius):
        obstacle_tree = KDTree(np.vstack((ox, oy)).T)

        sample_x, sample_y = self.voronoi_sampling(sx, sy, gx, gy, ox, oy)
        if show_animation:  # pragma: no cover
            plt.plot(sample_x, sample_y, ".b")

        road_map_info = self.generate_road_map_info(
            sample_x, sample_y, robot_radius, obstacle_tree)

        rx, ry = DijkstraSearch(show_animation).search(sx, sy, gx, gy,
                                                       sample_x, sample_y,
                                                       road_map_info)
        return rx, ry
Example #3
0
    def planning(self, start_x, start_y, goal_x, goal_y, obstacles):

        nodes = self.generate_graph_node(start_x, start_y, goal_x, goal_y,
                                         obstacles)

        road_map_info = self.generate_road_map_info(nodes, obstacles)

        if self.do_plot:
            self.plot_road_map(nodes, road_map_info)
            plt.pause(1.0)

        rx, ry = DijkstraSearch(show_animation).search(
            start_x, start_y, goal_x, goal_y, [node.x for node in nodes],
            [node.y for node in nodes], road_map_info)

        return rx, ry