Example #1
0
def solve_qubo(Q,
               sampler="CPU",  # CPU or QPU
               k=10,
               chain_strength=None):
    """
    Given an upper triangular matrix Q of size NxN, solves the quadratic unconstrained binary
    optimization (QUBO) problem given by

        minimize sum(x[i] * Q[i,j] * x[j]
                     for i in range(N),
                     for j in range(i+1, N))

    Uses dimod.SimulatedAnnealingSampler, which solves the problem k times through simulated
    annealing (on a regular CPU). This method returns the best solution found.
    """
    # assert isinstance(Q, np.ndarray)
    # assert sampler in ["CPU", "QPU"]
    n = Q.shape[0]
    nz = len(Q[Q != 0])
    print("Solving QUBO problem (%d vars, %d nz) on %s..." % (n, nz, sampler))

    start = time.time()
    if sampler == "CPU":
        sampler = dimod.SimulatedAnnealingSampler()
        response = sampler.sample_qubo(Q, num_reads=k)
    else:
        if chain_strength is None:
            chain_strength = int(10 * np.max(np.abs(Q)))
        sampler = AutoEmbeddingComposite(DWaveSampler(solver=dict(qpu=True)))
        response = sampler.sample_qubo(Q, num_reads=k, chain_strength=chain_strength)
    elapsed = time.time() - start

    print("Solved in %.2f seconds" % elapsed)
    solution = min(response.data(["sample", "energy"]), key=lambda s: s.energy)
    return solution, response
Example #2
0
 def dimod_solver(self):
     """ Uses dimod package from D-Wave to implement a binary quadratic model and
         then use a simulated annealer to sample from the model.
     """
     linear = self.h_dict
     print(linear)
     quadratic = self.j
     print(quadratic)
     #offset = self.offset
     offset = 0
     model = dimod.BinaryQuadraticModel(linear, quadratic, offset,
                                        dimod.Vartype.SPIN)
     response = dimod.SimulatedAnnealingSampler().sample(model)
     #response = dimod.ExactSolver().sample(model)
     #print(response)
     min_energy = 0
     for sample in response.data(['sample', 'energy']):
         sample_dict = {
             'sample': {k: int((1 + sample[0][k]) / 2)
                        for k in sample[0]}
         }
         sample_dict.update({'energy': sample[1]})
         self.samples.append(sample_dict)
         min_energy = min(sample[1], min_energy)
         self.solution = {
             f'x{k+1}': v
             for k, v in sample_dict['sample'].items()
             if k < len(self.masses)
         } if min_energy == sample[1] else self.solution
         if min_energy == sample[1]:
             print(sample)
     self._solution_blocks()
Example #3
0
    def test_dimod_vs_list(self):
        G = nx.complete_graph(4)
        for u, v in G.edges():
            G[u][v]['weight'] = 1

        route = tsp.traveling_salesperson(G, dimod.ExactSolver())
        route = tsp.traveling_salesperson(G, dimod.SimulatedAnnealingSampler())
Example #4
0
def run_sim(model):
    ''' Run QUBO problem using D-Wave's simulated annealing
    Args:
        model - BQM model to solve
    Returns:
        solution set
    '''
    return dimod.SimulatedAnnealingSampler().sample(model)
Example #5
0
    def test_bug1(self):
        # IN IN OUT AUX
        h = {0: -.5, 1: 0, 2: 1, 3: -.5}
        J = {(0, 2): -1, (1, 2): -1, (0, 3): .5, (1, 3): -1}

        J[(0, 4)] = -.1
        J[(4, 5)] = -.1
        J[(5, 6)] = -.1
        h[4] = 0
        h[5] = 0
        h[6] = .1

        response = dimod.SimulatedAnnealingSampler().sample_ising(h, J, num_reads=100)
Example #6
0
    def sample(self, bqm, num_reads=10, flux_biases=[]):
        # we are altering the bqm
        new_bqm = bqm.copy()

        for v, fbo in enumerate(flux_biases):
            self.flux_biases_flag = True
            new_bqm.add_variable(v, 1000. * fbo)  # add the bias

        response = dimod.SimulatedAnnealingSampler().sample(new_bqm, num_reads=num_reads)

        energies = [bqm.energy(sample) for sample in response.samples(sorted_by=None)]

        return dimod.Response.from_dicts(response.samples(sorted_by=None), {'energy': energies}, vartype=bqm.vartype)
 def setUp(self):
     self.sampler = dimod.SimulatedAnnealingSampler()
     self.sampler_factory = dimod.SimulatedAnnealingSampler
Example #8
0
import dwave_networkx as dnx
import networkx as nx

import dimod # シュミレーション
# from dwave.system.samplers import DWaveSampler # 実機
# from dwave.system.composites import EmbeddingComposite # 実機

sampler = dimod.SimulatedAnnealingSampler() # シュミレーション
# sampler = EmbeddingComposite(DWaveSampler()) # 実機


G = nx.Graph()
G.add_edges_from([(0,1),(0,2),(1,3),(2,3),(3,4)])

# 頂点被覆問題をとくためのライブラリ(min_vertex_cover)
candidate = dnx.min_vertex_cover(G, sampler)
print(candidate)
sampler.parameters

################################################################################################################################
#                                             S  I  M  U  L  A  T  O  R
################################################################################################################################

import dimod

# cannot put no of repetitions
#solver = dimod.ExactSolver().sample(bqm)
#solver = dimod.SimulatedAnnealingSampler()
#response = solver.sample_qubo(Q)

bqm = dimod.BinaryQuadraticModel.from_qubo(Q)
#response = dimod.ExactSolver().sample(bqm)     # other solver simulator?
response = dimod.SimulatedAnnealingSampler().sample(bqm, num_reads=10)
#for sample, energy, num_occurrences in response.data(['sample', 'energy', 'num_occurrences']):
#    print("sample: ", sample, "energy: ", energy, "num_occurences: ", num_occurrences)

# rearrange the response
response_df = pd.DataFrame([
    (str(sample), energy, num_occurrences)
    for sample, energy, num_occurrences in response.data(
        ['sample', 'energy', 'num_occurrences'])
])
response_df.columns = ['sample', 'energy', 'num_occurrences']
response_pv = response_df.pivot_table(index=['sample', 'energy'],
                                      values='num_occurrences',
                                      aggfunc=sum)
print(response_pv.sort_values(by='num_occurrences', ascending=False))
Example #10
0
    def test_dimod_vs_list(self):
        G = nx.path_graph(5)

        indep_set = dnx.maximum_independent_set(G, dimod.ExactSolver())
        indep_set = dnx.maximum_independent_set(G, dimod.SimulatedAnnealingSampler())
Example #11
0
print(model)
print()

# We can solve it exactly

from dimod.reference.samplers import ExactSolver

sampler = ExactSolver()
solution = sampler.sample(model)
print("The exact solution is")
print(solution)
print()

# Or with *simulated annealing* (a heuristic method used in classical computers)

sampler = dimod.SimulatedAnnealingSampler()
response = sampler.sample(model, num_reads=10)
print("The solution with simulated annealing is")
print(response)
print()

# And, of course, with D-Wave's quantum computer

from dwave.system.samplers import DWaveSampler
from dwave.system.composites import EmbeddingComposite

sampler = EmbeddingComposite(DWaveSampler())
sampler_name = sampler.properties['child_properties']['chip_id']
response = sampler.sample(model, num_reads=5000)
print("The solution obtained by D-Wave's quantum annealer", sampler_name, "is")
print(response)
    def test_intro_example(self):
        # Dev note: test that the example in the intro documentation still works, if this fails go
        # update the example!

        # from dwave.system.samplers import DWaveSampler
        # from dwave.system.composites import EmbeddingComposite
        # import networkx as nx
        # import matplotlib.pyplot as plt

        # Represent the map as the nodes and edges of a graph
        provinces = [
            'AB', 'BC', 'MB', 'NB', 'NL', 'NS', 'NT', 'NU', 'ON', 'PE', 'QC',
            'SK', 'YT'
        ]
        neighbors = [('AB', 'BC'), ('AB', 'NT'), ('AB', 'SK'), ('BC', 'NT'),
                     ('BC', 'YT'), ('MB', 'NU'), ('MB', 'ON'), ('MB', 'SK'),
                     ('NB', 'NS'), ('NB', 'QC'), ('NL', 'QC'), ('NT', 'NU'),
                     ('NT', 'SK'), ('NT', 'YT'), ('ON', 'QC')]

        # Function for the constraint that two nodes with a shared edge not both select one color
        def not_both_1(v, u):
            return not (v and u)

        # # Function that plots a returned sample
        # def plot_map(sample):
        #     G = nx.Graph()
        #     G.add_nodes_from(provinces)
        #     G.add_edges_from(neighbors)
        #     # Translate from binary to integer color representation
        #     color_map = {}
        #     for province in provinces:
        #           for i in range(colors):
        #             if sample[province+str(i)]:
        #                 color_map[province] = i
        #     # Plot the sample with color-coded nodes
        #     node_colors = [color_map.get(node) for node in G.nodes()]
        #     nx.draw_circular(G, with_labels=True, node_color=node_colors, node_size=3000, cmap=plt.cm.rainbow)
        #     plt.show()

        # Valid configurations for the constraint that each node select a single color
        one_color_configurations = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0),
                                    (1, 0, 0, 0)}
        colors = len(one_color_configurations)

        # Create a binary constraint satisfaction problem
        csp = dwavebinarycsp.ConstraintSatisfactionProblem(
            dwavebinarycsp.BINARY)

        # Add constraint that each node (province) select a single color
        for province in provinces:
            variables = [province + str(i) for i in range(colors)]
            csp.add_constraint(one_color_configurations, variables)

        # Add constraint that each pair of nodes with a shared edge not both select one color
        for neighbor in neighbors:
            v, u = neighbor
            for i in range(colors):
                variables = [v + str(i), u + str(i)]
                csp.add_constraint(not_both_1, variables)

        # Convert the binary constraint satisfaction problem to a binary quadratic model
        bqm = dwavebinarycsp.stitch(csp)

        sampler = dimod.SimulatedAnnealingSampler()
        # # Set up a solver using the local system’s default D-Wave Cloud Client configuration file
        # # and sample 50 times
        # sampler = EmbeddingComposite(DWaveSampler())         # doctest: +SKIP
        response = sampler.sample(bqm, num_reads=10)

        # # Plot the lowest-energy sample if it meets the constraints
        sample = next(response.samples())  # doctest: +SKIP
        # if not csp.check(sample):              # doctest: +SKIP
        #     print("Failed to color map")
        # else:
        #     plot_map(sample)

        if not csp.check(sample):
            pass
Example #13
0
def phase_2(enemy, our, previous_enemy):
    h_const_2 = 2
    num_checkers_on_board = np.sum(our) + np.sum(enemy)
    num_checker_constraint = -num_spots + num_checkers_on_board
    c = num_checker_constraint
    constraint_const_2 = 40
    j_const_2 = 2
    mill_constant_2 = 1
    linear = {}
    for i in range(num_spots):
        if our[i] == 1:
            linear[i + 1] = h_const_2
        elif enemy[i] == 1:
            linear[i + 1] = -h_const_2
        else:
            linear[i + 1] = 0
        #print(linear)
    # Adding quadratic terms for constraint
    quadratic = {}
    for i in range(1, num_spots):
        for j in range(i + 1, num_spots + 1):
            quadratic[(i, j)] = 2 * constraint_const_2
    # Update linear for constraint
    for i in range(1, num_spots + 1):
        linear[i] -= 2 * c * constraint_const_2

    offset = (c**2 + num_spots) * constraint_const  # Think about sign
    # Set interactions, i.e. update quadratic
    for i in range(num_spots):
        if enemy[i]:
            idx = b.get_rowcol_idx(i)
            for j in idx:
                if i < j:
                    quadratic[(i + 1, j + 1)] += -j_const_2
                else:
                    quadratic[(j + 1, i + 1)] += -j_const_2

    # update quadratic for mill energy decrease
    for i in range(0, num_spots):
        if enemy[i] == 0:
            continue
        idx = b.get_rowcol_idx(i)
        for j in idx:
            if enemy[j]:
                if i < j:
                    quadratic[(i + 1, j + 1)] -= 2 * mill_constant_2
                else:
                    quadratic[(j + 1, i + 1)] -= 2 * mill_constant_2
            else:
                if i < j:
                    quadratic[(i + 1, j + 1)] += 2 * mill_constant_2
                else:
                    quadratic[(j + 1, i + 1)] += 2 * mill_constant_2

    offset -= (2 * num_spots) * mill_constant_2

    vartype = dimod.SPIN

    bqm = dimod.BinaryQuadraticModel(linear, quadratic, offset, vartype)
    sampler = dimod.SimulatedAnnealingSampler()
    sample_set = sampler.sample(bqm, num_reads=10)
    #sampler = dimod.ExactSolver()
    #sample_set = sampler.sample(bqm)
    next_state = sample_set.samples()[0]  # Maybe do sampling instead??
    #print(next_state)
    #print("Previous: " + str(previous_enemy))
    #print("New: " + str(enemy))
    #print(quadratic)
    for i in range(1, num_spots + 1):
        if next_state[i] == 1:
            enemy[i - 1] = 1
            b.place_marker(pos=i - 1, player_num=2)
    # Find the move
    move = enemy - previous_enemy
    print(move)
    for i in range(num_spots):
        if move[i]:
            move_to = i + 1
            print("Moved to: " + str(move_to))
    previous_enemy = list(enemy)

    print(b)
    print(sample_set)
    # Choose our input
    our_pos = int(input('Give position to place marker (1-24): '))
    our[our_pos - 1] = 1
    b.place_marker(pos=our_pos - 1, player_num=1)
    return
Example #14
0
linear = {('x0', 'x0'): -1, ('x1', 'x1'): -1, ('x2', 'x2'): -3}
quadratic = {('x0', 'x1'): 2, ('x0', 'x2'): 2, ('x1', 'x2'): 2}

Q = dict(linear)
Q.update(quadratic)
"""
from dwave.system.samplers import DWaveSampler
from dwave.system.composites import EmbeddingComposite
response = EmbeddingComposite(DWaveSampler()).sample_qubo(Q, num_reads=1000)

for sample, energy, num_occurrences, chain_break_fraction in list(response.data()):
	    print(sample, "Energy: ", energy, "Occurrences: ", num_occurrences)
"""
import dimod

b = dimod.BinaryQuadraticModel.from_qubo(Q, 0.0)
r = dimod.SimulatedAnnealingSampler().sample(b)
for sample, energy, num_occurrences in r.data(
    ['sample', 'energy', 'num_occurrences']):
    print(sample, "Energy: ", energy, "Occurrences: ", num_occurrences)
        for p in phi:
            J += summand(t, p)
    return J


N = 6
h = {}
for i in range(N):
    m_str = "x" + str(i)
    h[m_str] = 0

J = {}
for m1 in range(0, N):
    for n1 in range(0, N):
        for m2 in range(0, N):
            for n2 in range(0, N):
                if (m1 != m2 or n1 != n2):
                    str_mn = ('x' + str(m1 * N + n1), 'x' + str(m2 * N + n2))
                    J[str_mn] = (Jmn_int(m1, n1, m2, n2))

import numpy as np
sampleset = dimod.SimulatedAnnealingSampler().sample_ising(h, J)
print(sampleset.first)
mat_dict = sampleset.first[0]
opt_code_2d = np.zeros(shape=(N, N))
for m in range(N):
    for n in range(N):
        dict_string = 'x' + str(m * N + n)
        opt_code_2d[m, n] = mat_dict[dict_string]

RCS_calc(opt_code_2d, N)
Example #16
0
    def __init__(self, H, qpu, vartype, encoding):
        """
        Class that takes a dictionary representation of an ising-hamiltonian and submits problem to a quantum annealer

        qpu: string
            specifies quantum processing unit to be used during calculation--referring to name specifying this information in dwave config file

        vartype: string
            QUBO or Ising (all case variants acceptable)

        encoding: string
            logical or direct. If logical, embeds onto chip under the hood. If direct, assumes manual embedding and tries to put directly onto chip as is.

        H: dict
            The hamiltonian represented as a dict of the form {(0, 0): h0, (0, 1): J01, ...} OR {(0, 0): 'h0', (0, 1): 'J0', (1, 1): 'h1', ...}
        """
        # poplate run information
        super().__init__(qpu, vartype, encoding)

        # create a set of regex rules to parse h/J string keys in H
        # also creates a "rules" dictionary to relate qubit weights to relevant factor
        self.hvrule = re.compile('h[0-9]*')
        self.Jvrule = re.compile('J[0-9]*')
        self.weight_rules = {}

        # create list of qubits/ couplers and
        # dicts that map indepndent params to
        # all qubits/ couplers that have that value
        self.H = H
        self.qubits = []
        self.params_to_qubits = {}
        self.couplers = []
        self.params_to_couplers = {}
        for key, value in H.items():
            if key[0] == key[1]:
                self.qubits.append(key[0])
                if type(value) != str:
                    div_idx = -1
                else:
                    div_idx = value.find('/')
                if div_idx == -1:
                    self.weight_rules[key[0]] = 1
                else:
                    self.weight_rules[key[0]] = float(value[div_idx + 1:])
                    value = value[:div_idx]
                self.params_to_qubits.setdefault(value, []).append(key[0])
            else:
                self.couplers.append(key)
                if type(value) != str:
                    div_idx = -1
                else:
                    div_idx = value.find('/')
                if div_idx == -1:
                    self.weight_rules[key] = 1
                else:
                    self.weight_rules[key] = float(value[div_idx + 1:])
                    value = value[:div_idx]
                self.params_to_couplers.setdefault(value, []).append(key)

        self.nqubits = len(self.qubits)
        self.Hsize = 2**(self.nqubits)

        if qpu == 'dwave':
            try:
                # let OCEAN handle embedding
                if encoding == "logical":
                    # encode several times on graph
                    # based on qubits encoded
                    if len(self.qubits) <= 4:
                        self.sampler = EmbeddingComposite(
                            TilingComposite(DWaveSampler(), 1, 1, 4))
                    else:
                        self.sampler = EmbeddingComposite(DWaveSampler())

                # otherwise, assume 1-1
                else:
                    self.sampler = DWaveSampler()

            except:
                raise ConnectionError(
                    "Cannot connect to DWave sampler. Have you created a DWave config file using 'dwave config create'?"
                )

        elif qpu == 'test':
            self.sampler = dimod.SimulatedAnnealingSampler()

        elif qpu == 'numerical':
            self.processordata = loadAandB()
            self.graph = nx.Graph()
            self.graph.add_edges_from(self.couplers)
            self.data = pd.DataFrame()

        # save values/ metadata
        self.H = copy.deepcopy(H)
        if encoding == 'direct':
            self.wqubits = self.sampler.properties['qubits']
            self.wcouplers = self.sampler.properties['couplers']
Example #17
0
        if include_in_list:
            list1.append(numbers[index])
        else:
            list2.append(numbers[index])
    return list1, list2


def print_result(sample_set):
    for sample in sample_set.samples():
        list1, list2 = split_numbers_list(numbers, sample)
        print "list1: {}, sum: {}, list2: {}, sum: {}".format(
            list1, sum(list1), list2, sum(list2))


exact_solver = dimod.ExactSolver()
simulated_annealing_sampler = dimod.SimulatedAnnealingSampler()
dwave_sampler = EmbeddingComposite(DWaveSampler())

print "#" * 80
numbers = generate_numbers(
    50)  # generate a list of numbers to be split into equal sums
bqm = to_bqm(numbers)

#
# ExactSolver fails when list has many items eg. len(numbers) == 100
#
# start = time.time()
# sample_set = solve(exact_solver, bqm)
# end = time.time()
# print "Using ExactSolver (elapsed time: {}s)".format(end-start)
# sample_set = sample_set.truncate(5)
Example #18
0
    test_size=0.20,
    stratify=bc_data.target,
)

# Transform {0,1} labels into {-1,1} labels.
y_train = 2 * y_train - 1
y_test = 2 * y_test - 1

# Train classical model
ab_clf = AdaBoostClassifier(n_estimators=20)
ab_clf.fit(X_train, y_train)

sampler = {}

if len(sys.argv) < 2:
    sampler['sampler'] = dimod.SimulatedAnnealingSampler()
    sampler['params'] = {}
else:
    token = sys.argv[1]
    sampler['sampler'] = EmbeddingComposite(
        DWaveSampler(token=token, solver={'qpu': True}))
    sampler['params'] = {
        'num_reads': 1000,
        'auto_scale': True,
        'num_spin_reversal_transforms': 10,
        'postprocess': 'optimization',
    }

skb = SkewBoost(ab_clf.estimators_)
# Train SkewBoost on a D-Wave QPU or using SimulatedAnnealingSampler
skb.fit(X_train,