Example #1
0
    def sample(self, bqm, **kwargs):
        """Sample from the specified binary quadratic model.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            **kwargs:
                Optional keyword arguments for the sampling method, specified per solver.

        Returns:
            :class:`dimod.SampleSet`

        Examples:
            This example submits a simple Ising problem of just two variables on a
            D-Wave system.
            Because the problem fits in a single :term:`Chimera` unit cell, it is tiled
            across the solver's entire Chimera graph, resulting in multiple samples
            (the exact number depends on the working Chimera graph of the D-Wave system).

            >>> from dwave.system import DWaveSampler, EmbeddingComposite
            >>> from dwave.system import TilingComposite
            ...
            >>> qpu_2000q = DWaveSampler(solver={'topology__type': 'chimera'})
            >>> sampler = EmbeddingComposite(TilingComposite(qpu_2000q, 1, 1, 4))
            >>> response = sampler.sample_ising({},{('a', 'b'): 1})
            >>> len(response)    # doctest: +SKIP
            246

        See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/stable/concepts/index.html>`_
        for explanations of technical terms in descriptions of Ocean tools.

        """

        # apply the embeddings to the given problem to tile it across the child sampler
        embedded_bqm = dimod.BinaryQuadraticModel.empty(bqm.vartype)
        __, __, target_adjacency = self.child.structure
        for embedding in self.embeddings:
            embedded_bqm.update(
                dwave.embedding.embed_bqm(bqm, embedding, target_adjacency))

        # solve the problem on the child system
        tiled_response = self.child.sample(embedded_bqm, **kwargs)

        responses = []

        for embedding in self.embeddings:
            embedding = {
                v: chain
                for v, chain in embedding.items() if v in bqm.variables
            }

            responses.append(
                dwave.embedding.unembed_sampleset(tiled_response, embedding,
                                                  bqm))

        answer = dimod.concatenate(responses)
        answer.info.update(tiled_response.info)

        return answer
Example #2
0
 def _merge_results(self, results):
     "Merge results into a single SampleSet."
     sum_keys = [
         "total_real_time", "qpu_access_overhead_time",
         "post_processing_overhead_time", "qpu_sampling_time",
         "total_post_processing_time", "qpu_programming_time",
         "run_time_chip", "qpu_access_time"
     ]
     avg_keys = [
         "anneal_time_per_run", "readout_time_per_run",
         "qpu_delay_time_per_sample", "qpu_anneal_time_per_sample",
         "qpu_readout_time_per_sample"
     ]
     timing = {}
     merged = dimod.concatenate(results)
     nsamples = len(merged)
     for sk in sum_keys:
         try:
             timing[sk] = sum([r.info["timing"][sk] for r in results])
         except KeyError:
             pass
     for ak in avg_keys:
         try:
             timing[ak] = sum(
                 [r.info["timing"][ak] * len(r)
                  for r in results]) // nsamples
         except KeyError:
             pass
     merged.info["timing"] = timing
     return merged
Example #3
0
    def test_simple(self):
        ss0 = dimod.SampleSet.from_samples([-1, +1], dimod.SPIN, energy=-1)
        ss1 = dimod.SampleSet.from_samples([+1, -1], dimod.SPIN, energy=-1)
        ss2 = dimod.SampleSet.from_samples([[+1, +1], [-1, -1]], dimod.SPIN, energy=[1, 1])

        comb = dimod.concatenate((ss0, ss1, ss2))

        out = dimod.SampleSet.from_samples([[-1, +1], [+1, -1], [+1, +1], [-1, -1]], dimod.SPIN, energy=[-1, -1, 1, 1])

        self.assertEqual(comb, out)
        np.testing.assert_array_equal(comb.record.sample, out.record.sample)
Example #4
0
    def test_variables_order_and_vartype(self):
        ss0 = dimod.SampleSet.from_samples(([-1, +1], 'ab'), dimod.SPIN, energy=-1)
        ss1 = dimod.SampleSet.from_samples(([-1, +1], 'ba'), dimod.SPIN, energy=-1)
        ss2 = dimod.SampleSet.from_samples(([[1, 1], [0, 0]], 'ab'), dimod.BINARY, energy=[1, 1])

        comb = dimod.concatenate((ss0, ss1, ss2))

        out = dimod.SampleSet.from_samples(([[-1, +1], [+1, -1], [+1, +1], [-1, -1]], 'ab'),
                                           dimod.SPIN, energy=[-1, -1, 1, 1])

        self.assertEqual(comb, out)
        np.testing.assert_array_equal(comb.record.sample, out.record.sample)
Example #5
0
def relative_k_hamming_trench(samplesets, hamm_k, norm=False, info_key=None):
    # TODO: Avoid calculating hamming distance twice
    pockets = []
    energies = OrderedDict()
    union = dimod.concatenate(samplesets)
    for data in union.data(sorted_by='energy'):
        value = tuple(data.sample.values())
        local = (scipy.spatial.distance.hamming(value, p) <= hamm_k
                 for p in pockets)
        if not any(local):
            pockets.append(value)
            energies[value] = data.energy

    pockets_i = OrderedDict()
    pockets_union = OrderedDict([(k, 0) for k in pockets])
    for i, sampleset in enumerate(samplesets):
        bins = OrderedDict([(k, 0) for k in pockets])
        for sample in sampleset.samples(sorted_by='energy'):
            value = tuple(sample.values())
            hits = []
            k = hamm_k
            for pocket in pockets:
                hamm_dist = scipy.spatial.distance.hamming(value, pocket)
                if hamm_dist < k:
                    hits = [pocket]
                    k = hamm_dist
                elif hamm_dist == k:
                    hits += [pocket]
            split = 1 / len(hits)
            for hit in hits:
                bins[hit] = split + bins.get(hit, 0)
                pockets_union[hit] += split
        name = sampleset.info.get(info_key, str(i))
        pockets_i[str(name)] = bins

    if norm:
        norm_pockets = OrderedDict()
        for samples, (name, pockets) in zip(samplesets, pockets_i.items()):
            nsamples = len(samples)
            norm_pocket = OrderedDict([(k, v / nsamples)
                                       for k, v in pockets.items()])
            norm_pockets[name] = norm_pocket
        norm_union = OrderedDict([(k, v / len(union))
                                  for k, v in pockets_union.items()])
        return norm_union, energies, norm_pockets
    else:
        return pockets_union, energies, pockets_i
Example #6
0
    def load_sampleset(self, bqm, target, embedding, tags=[], unembed_args=None, index=None):
        """ Load a sampleset object from JSON format, filed under:
            <EmberaDB>/<bqm_id>/<target_id>/<embedding_id>/<tags>/<sampleset_id>.json
            If more than one sampleset is found, returns the concatenation
            of all samples found under the given criteria.

        Arguments:
            bqm: (BinaryQuadraticModel or networkx.Graph)

            target: (networkx.Graph, list, or str)

        Optional Arguments:
            If none of the optional arguments are given, all samplesets under
            that path are concatenated.

            tag: (str, default=[])
                If provided, sampleset is read from directory ./<tag>/

            embedding: (embera.Embedding, dict, or str, default=None)
                Dictionary is converted to Embedding, Embedding ID is used.
                String is taken literally as path.
                If "", concatenate all under <EmberaDB>/<bqm_id>/<target_id>/<tag>
                If {}, return `native` sampleset. i.e. <Embedding({}).id>.json

        """
        samplesets = self.load_samplesets(bqm,target,embedding,tags,unembed_args)

        if not samplesets:
            return dimod.SampleSet.from_samples([],bqm.vartype,None)

        if index is not None:
            return samplesets.pop(index)

        try:
            sampleset = dimod.concatenate(samplesets)
            for s in samplesets: sampleset.info.update(s.info)
            return sampleset
        except KeyError:
            raise RuntimeError("Samplesets don't share the same embedding")
Example #7
0
 def test_empty(self):
     with self.assertRaises(ValueError):
         dimod.concatenate([])
Example #8
0
    def sample(self, bqm, anneal_schedules=None, **parameters):
        """Sample the binary quadratic model using reverse annealing along a given set 
        of anneal schedules.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            anneal_schedules (list of lists, optional, default=[[[0, 1], [1, 0.35], [9, 0.35], [10, 1]]]): 
                Anneal schedules in order of submission. Each schedule is formatted 
                as a list of [time, s] pairs, in which time is in microseconds and s 
                is the normalized persistent current in the range [0,1].

            initial_state (dict, optional): 
                The state to reverse anneal from. If not provided, it will
                be randomly generated.

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :obj:`dimod.SampleSet` that has initial_state and schedule_index fields.

        Examples:
           This example runs 100 reverse anneals each for three schedules on a problem
           constructed by setting random :math:`\pm 1` values on a clique (complete
           graph) of 15 nodes, minor-embedded on a D-Wave system using the
           :class:`.DWaveCliqueSampler` sampler.

           >>> import dimod
           >>> from dwave.system import DWaveCliqueSampler, ReverseAdvanceComposite
           ...
           >>> sampler = DWaveCliqueSampler()         # doctest: +SKIP
           >>> sampler_reverse = ReverseAdvanceComposite(sampler)    # doctest: +SKIP
           >>> schedule = [[[0.0, 1.0], [t, 0.5], [20, 1.0]] for t in (5, 10, 15)]
           ...
           >>> bqm = dimod.generators.ran_r(1, 15)
           >>> init_samples = {i: -1 for i in range(15)}
           >>> sampleset = sampler_reverse.sample(bqm,
           ...                                    anneal_schedules=schedule,
           ...                                    initial_state=init_samples,
           ...                                    num_reads=100,
           ...                                    reinitialize_state=True)  # doctest: +SKIP


        """
        child = self.child

        if anneal_schedules is None:
            anneal_schedules = [[[0, 1], [1, 0.35], [9, 0.35], [10, 1]]]    

        vartype_values = list(bqm.vartype.value)
        if 'initial_state' not in parameters:
            initial_state = dict(zip(list(bqm.variables), np.random.choice(vartype_values, len(bqm))))
        else:
            initial_state = parameters.pop('initial_state')

        if not isinstance(initial_state, abc.Mapping):
            raise TypeError("initial state provided must be a dict, but received {}".format(initial_state))

        if 'reinitialize_state' not in parameters:
            parameters['reinitialize_state'] = True

            if "answer_mode" in child.parameters:
                parameters['answer_mode'] = 'histogram'

        samplesets = None
        for schedule_idx, anneal_schedule in enumerate(anneal_schedules):
            sampleset = child.sample(bqm, anneal_schedule=anneal_schedule, initial_state=initial_state,
                                     **parameters)

            initial_state, _ = dimod.as_samples(initial_state)

            if 'initial_state' not in sampleset.record.dtype.names:
                init_state_vect = []

                if parameters['reinitialize_state']:
                    init_state_vect = [initial_state[0].copy() for i in range(len(sampleset.record.energy))]
                else:
                    # each sample is the next sample's initial state
                    init_state_vect.append(initial_state[0].copy())
                    for sample in sampleset.record.sample[:-1]:
                        init_state_vect.append(sample)

                sampleset = dimod.append_data_vectors(sampleset, initial_state=init_state_vect)
        
            if 'schedule_index' not in sampleset.record.dtype.names:
                schedule_index_vect = [schedule_idx] * len(sampleset.record.energy)
                sampleset = dimod.append_data_vectors(sampleset, schedule_index=schedule_index_vect)

            if samplesets is None:
                samplesets = sampleset
            else:
                samplesets = dimod.concatenate((samplesets, sampleset))

            if schedule_idx+1 == len(anneal_schedules):
                # no need to create the next initial state - last iteration
                break

            # prepare the initial state for the next iteration
            if parameters['reinitialize_state']:
                # if reinitialize is on, choose the lowest energy, most probable state for next iteration
                ground_state_energy = sampleset.first.energy
                lowest_energy_samples = sampleset.record[sampleset.record.energy == ground_state_energy]
                lowest_energy_samples.sort(order='num_occurrences')
                initial_state = dict(zip(sampleset.variables, lowest_energy_samples[-1].sample))
            else:
                # if not reinitialized, take the last state as the next initial state
                initial_state = dict(zip(sampleset.variables, sampleset.record.sample[-1]))

        samplesets.info['anneal_schedules'] = anneal_schedules
        return samplesets
Example #9
0
    def sample(self, bqm, initial_states=None, initial_states_generator='random', num_reads=None, 
               seed=None, **parameters):
        """Sample the binary quadratic model using reverse annealing from multiple initial states.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            initial_states (samples-like, optional, default=None):
                One or more samples, each defining an initial state for all the problem variables. 
                If fewer than `num_reads` initial states are defined, additional values are 
                generated as specified by `initial_states_generator`. See :func:`dimod.as_samples` 
                for a description of "samples-like".

            initial_states_generator ({'none', 'tile', 'random'}, optional, default='random'):
                Defines the expansion of `initial_states` if fewer than
                `num_reads` are specified:

                * "none":
                    If the number of initial states specified is smaller than
                    `num_reads`, raises ValueError.

                * "tile":
                    Reuses the specified initial states if fewer than `num_reads`
                    or truncates if greater.

                * "random":
                    Expands the specified initial states with randomly generated
                    states if fewer than `num_reads` or truncates if greater.

            num_reads (int, optional, default=len(initial_states) or 1):
                Equivalent to number of desired initial states. If greater than the number of 
                provided initial states, additional states will be generated. If not provided, 
                it is selected to match the length of `initial_states`. If `initial_states` 
                is not provided, `num_reads` defaults to 1.

            seed (int (32-bit unsigned integer), optional):
                Seed to use for the PRNG. Specifying a particular seed with a
                constant set of parameters produces identical results. If not
                provided, a random seed is chosen.

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :obj:`dimod.SampleSet` that has initial_state field.

        Examples:
           This example runs 100 reverse anneals each from two initial states on a problem
           constructed by setting random :math:`\pm 1` values on a clique (complete
           graph) of 15 nodes, minor-embedded on a D-Wave system using the
           :class:`.DWaveCliqueSampler` sampler.

           >>> import dimod
           >>> from dwave.system import DWaveCliqueSampler, ReverseBatchStatesComposite
           ...
           >>> sampler = DWaveCliqueSampler()       # doctest: +SKIP
           >>> sampler_reverse = ReverseBatchStatesComposite(sampler)   # doctest: +SKIP
           >>> schedule = [[0.0, 1.0], [10.0, 0.5], [20, 1.0]]
           ...
           >>> bqm = dimod.generators.ran_r(1, 15)
           >>> init_samples = [{i: -1 for i in range(15)}, {i: 1 for i in range(15)}]
           >>> sampleset = sampler_reverse.sample(bqm,
           ...                                    anneal_schedule=schedule,
           ...                                    initial_states=init_samples,
           ...                                    num_reads=100,
           ...                                    reinitialize_state=True)  # doctest: +SKIP


        """
        child = self.child
        
        parsed = self.parse_initial_states(bqm, 
                                           initial_states=initial_states,
                                           initial_states_generator=initial_states_generator,
                                           num_reads=num_reads,
                                           seed=seed)
        
        parsed_initial_states = np.ascontiguousarray(parsed.initial_states.record.sample)

        # there is gonna be way too much data generated - better to histogram them if possible
        if 'answer_mode' in child.parameters:
            parameters['answer_mode'] = 'histogram'

        # reduce number of network calls if possible by aggregating init states
        if 'num_reads' in child.parameters:
            aggreg = parsed.initial_states.aggregate()
            parsed_initial_states = np.ascontiguousarray(aggreg.record.sample)
            parameters['num_reads'] = aggreg.record.num_occurrences

        samplesets = None
        
        for initial_state in parsed_initial_states:
            sampleset = child.sample(bqm, initial_state=dict(zip(bqm.variables, initial_state)), **parameters)

            if 'initial_state' not in sampleset.record.dtype.names:
                init_state_vect = [initial_state.copy() for i in range(len(sampleset.record.energy))]
                sampleset = dimod.append_data_vectors(sampleset, initial_state=init_state_vect)

            if samplesets is None:
                samplesets = sampleset
            else:
                samplesets = dimod.concatenate((samplesets, sampleset))

        return samplesets