Example #1
0
def test_literal_evalf_is_number_is_zero_is_comparable():
    from diofant.integrals.integrals import Integral
    from diofant.core.symbol import symbols
    from diofant.core.function import Function
    x = symbols('x')
    f = Function('f')

    # the following should not be changed without a lot of dicussion
    # `foo.is_number` should be equivalent to `not foo.free_symbols`
    # it should not attempt anything fancy; see is_zero, is_constant
    # and equals for more rigorous tests.
    assert f(1).is_number is True
    i = Integral(0, (x, x, x))
    # expressions that are symbolically 0 can be difficult to prove
    # so in case there is some easy way to know if something is 0
    # it should appear in the is_zero property for that object;
    # if is_zero is true evalf should always be able to compute that
    # zero
    assert i.n() == 0
    assert i.is_zero
    assert i.is_number is False
    assert i.evalf(2, strict=False) == 0

    # issue sympy/sympy#10272
    n = sin(1)**2 + cos(1)**2 - 1
    assert n.is_comparable is not True
    assert n.n(2).is_comparable is not True
Example #2
0
    def __new__(cls, *args):
        if len(args) == 5:
            args = [(args[0], args[1]), (args[2], args[3]), args[4]]
        if len(args) != 3:
            raise TypeError("args must be either as, as', bs, bs', z or "
                            "as, bs, z")

        def tr(p):
            if len(p) != 2:
                raise TypeError("wrong argument")
            return TupleArg(_prep_tuple(p[0]), _prep_tuple(p[1]))

        arg0, arg1 = tr(args[0]), tr(args[1])
        if Tuple(arg0, arg1).has(S.Infinity, S.ComplexInfinity,
                                 S.NegativeInfinity):
            raise ValueError("G-function parameters must be finite")

        if any((a - b).is_integer and (a - b).is_positive for a in arg0[0]
               for b in arg1[0]):
            raise ValueError("no parameter a1, ..., an may differ from "
                             "any b1, ..., bm by a positive integer")

        # TODO should we check convergence conditions?
        return Function.__new__(cls, arg0, arg1, args[2])
Example #3
0
def test_core_dynamicfunctions():
    f = Function("f")
    check(f)
Example #4
0
 def __new__(cls, ap, bq, z):
     # TODO should we check convergence conditions?
     return Function.__new__(cls, _prep_tuple(ap), _prep_tuple(bq), z)
Example #5
0
def test_core_dynamicfunctions():
    # This fails because f is assumed to be a class at diofant.basic.function.f
    f = Function("f")
    check(f)
Example #6
0
    def findrecur(self, F=Function('F'), n=None):
        """Find a recurrence formula for the summand of the sum.

        Given a sum `f(n) = \sum_k F(n, k)`, where `F(n, k)` is
        doubly hypergeometric (that's, both `F(n + 1, k)/F(n, k)`
        and `F(n, k + 1)/F(n, k)` are rational functions of `n` and `k`),
        we find a recurrence for the summand `F(n, k)` of the form

            .. math:: \sum_{i=0}^I\sum_{j=0}^J a_{i,j}F(n - j, k - i) = 0

        Examples
        ========

        >>> from diofant import symbols, factorial, oo

        >>> n, k = symbols('n, k', integer=True)
        >>> s = Sum(factorial(n)/(factorial(k)*factorial(n - k)), (k, 0, oo))
        >>> s.findrecur()
        -F(n, k) + F(n - 1, k) + F(n - 1, k - 1)

        Notes
        =====

        We use Sister Celine's algorithm, see [1]_.

        References
        ==========

        .. [1] M. Petkovšek, H. S. Wilf, D. Zeilberger, A = B, 1996, Ch. 4.
        """
        from diofant import expand_func, gamma, factor, Mul
        from diofant.polys import together
        from diofant.simplify import collect

        if len(self.variables) > 1:
            raise ValueError
        else:
            if self.limits[0][1:] != (S.Zero, S.Infinity):
                raise ValueError
            k = self.variables[0]

        if not n:
            try:
                n = (self.function.free_symbols - {k}).pop()
            except KeyError:
                raise ValueError

        a = Function('a')

        def f(i, j):
            return self.function.subs([(n, i), (k, j)])

        I, J, step = 0, 1, 1
        y, x, sols = S.Zero, [], {}

        while not any(v for a, v in sols.items()):
            if step % 2 != 0:
                dy = sum(a(I, j) * f(n - j, k - I) / f(n, k) for j in range(J))
                dx = [a(I, j) for j in range(J)]
                I += 1
            else:
                dy = sum(a(i, J) * f(n - J, k - i) / f(n, k) for i in range(I))
                dx = [a(i, J) for i in range(I)]
                J += 1
            step += 1
            y += expand_func(dy.rewrite(gamma))
            x += dx

            t = together(y)
            numer = t.as_numer_denom()[0]
            numer = Mul(
                *[t for t in factor(numer).as_coeff_mul()[1] if t.has(a)])

            if not numer.is_rational_function(n, k):
                raise ValueError()

            z = collect(numer, k)
            eq = z.as_poly(k).all_coeffs()
            sols = dict(solve(eq, *x))

        y = sum(a(i, j) * F(n - j, k - i) for i in range(I) for j in range(J))
        y = y.subs(sols).subs(map(lambda a: (a, 1), x))

        return y if y else None
Example #7
0
def test_Min():
    from diofant.abc import x, y, z
    n = Symbol('n', negative=True)
    n_ = Symbol('n_', negative=True)
    nn = Symbol('nn', nonnegative=True)
    nn_ = Symbol('nn_', nonnegative=True)
    p = Symbol('p', positive=True)
    p_ = Symbol('p_', positive=True)
    np = Symbol('np', nonpositive=True)
    np_ = Symbol('np_', nonpositive=True)

    assert Min(5, 4) == 4
    assert Min(-oo, -oo) == -oo
    assert Min(-oo, n) == -oo
    assert Min(n, -oo) == -oo
    assert Min(-oo, np) == -oo
    assert Min(np, -oo) == -oo
    assert Min(-oo, 0) == -oo
    assert Min(0, -oo) == -oo
    assert Min(-oo, nn) == -oo
    assert Min(nn, -oo) == -oo
    assert Min(-oo, p) == -oo
    assert Min(p, -oo) == -oo
    assert Min(-oo, oo) == -oo
    assert Min(oo, -oo) == -oo
    assert Min(n, n) == n
    assert Min(n, np) == Min(n, np)
    assert Min(np, n) == Min(np, n)
    assert Min(n, 0) == n
    assert Min(0, n) == n
    assert Min(n, nn) == n
    assert Min(nn, n) == n
    assert Min(n, p) == n
    assert Min(p, n) == n
    assert Min(n, oo) == n
    assert Min(oo, n) == n
    assert Min(np, np) == np
    assert Min(np, 0) == np
    assert Min(0, np) == np
    assert Min(np, nn) == np
    assert Min(nn, np) == np
    assert Min(np, p) == np
    assert Min(p, np) == np
    assert Min(np, oo) == np
    assert Min(oo, np) == np
    assert Min(0, 0) == 0
    assert Min(0, nn) == 0
    assert Min(nn, 0) == 0
    assert Min(0, p) == 0
    assert Min(p, 0) == 0
    assert Min(0, oo) == 0
    assert Min(oo, 0) == 0
    assert Min(nn, nn) == nn
    assert Min(nn, p) == Min(nn, p)
    assert Min(p, nn) == Min(p, nn)
    assert Min(nn, oo) == nn
    assert Min(oo, nn) == nn
    assert Min(p, p) == p
    assert Min(p, oo) == p
    assert Min(oo, p) == p
    assert Min(oo, oo) == oo

    assert Min(n, n_).func is Min
    assert Min(nn, nn_).func is Min
    assert Min(np, np_).func is Min
    assert Min(p, p_).func is Min

    # lists
    pytest.raises(ValueError, lambda: Min())
    assert Min(x, y) == Min(y, x)
    assert Min(x, y, z) == Min(z, y, x)
    assert Min(x, Min(y, z)) == Min(z, y, x)
    assert Min(x, Max(y, -oo)) == Min(x, y)
    assert Min(p, oo, n, p, p, p_) == n
    assert Min(p_, n_, p) == n_
    assert Min(n, oo, -7, p, p, 2) == Min(n, -7)
    assert Min(2, x, p, n, oo, n_, p, 2, -2, -2) == Min(-2, x, n, n_)
    assert Min(0, x, 1, y) == Min(0, x, y)
    assert Min(1000, 100, -100, x, p, n) == Min(n, x, -100)
    assert Min(cos(x), sin(x)) == Min(cos(x), sin(x))
    assert Min(cos(x), sin(x)).subs(x, 1) == cos(1)
    assert Min(cos(x), sin(x)).subs(x, Rational(1, 2)) == sin(Rational(1, 2))
    pytest.raises(ValueError, lambda: Min(cos(x), sin(x)).subs(x, I))
    pytest.raises(ValueError, lambda: Min(I))
    pytest.raises(ValueError, lambda: Min(I, x))
    pytest.raises(ValueError, lambda: Min(S.ComplexInfinity, x))

    assert Min(1, x).diff(x) == Heaviside(1 - x)
    assert Min(x, 1).diff(x) == Heaviside(1 - x)
    assert Min(0, -x, 1 - 2*x).diff(x) == -Heaviside(x + Min(0, -2*x + 1)) \
        - 2*Heaviside(2*x + Min(0, -x) - 1)

    a, b = Symbol('a', extended_real=True), Symbol('b', extended_real=True)
    # a and b are both real, Min(a, b) should be real
    assert Min(a, b).is_extended_real

    # issue 7619
    f = Function('f')
    assert Min(1, 2 * Min(f(1), 2))  # doesn't fail

    # issue 7233
    e = Min(0, x)
    assert e.evalf == e.n
    assert e.n().args == (0, x)