Example #1
0
def test_as_content_primitive():
    # although the _as_content_primitive methods do not alter the underlying structure,
    # the as_content_primitive function will touch up the expression and join
    # bases that would otherwise have not been joined.
    assert ((x*(2 + 2*x)*(3*x + 3)**2)).as_content_primitive() == \
        (18, x*(x + 1)**3)
    assert (2 + 2*x + 2*y*(3 + 3*y)).as_content_primitive() == \
        (2, x + 3*y*(y + 1) + 1)
    assert ((2 + 6*x)**2).as_content_primitive() == (4, (3*x + 1)**2)
    assert ((2 + 6*x)**(2*y)).as_content_primitive() == \
        (1, (_keep_coeff(Integer(2), (3*x + 1)))**(2*y))
    assert (5 + 10*x + 2*y*(3 + 3*y)).as_content_primitive() == \
        (1, 10*x + 6*y*(y + 1) + 5)
    assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() == \
        (11, x*(y + 1))
    assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() == \
        (121, x**2*(y + 1)**2)
    assert (y**2).as_content_primitive() == (1, y**2)
    assert oo.as_content_primitive() == (1, oo)
    eq = x**(2 + y)
    assert (eq).as_content_primitive() == (1, eq)
    assert (Rational(1, 2)**(2 + x)).as_content_primitive() == (Rational(1, 4), 2**-x)
    assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \
           (Rational(1, 4), Rational(-1, 2)**x)
    assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \
           (Rational(1, 4), Rational(-1, 2)**x)
    assert (4**((1 + y)/2)).as_content_primitive() == (2, 4**(y/2))
    assert (3**((1 + y)/2)).as_content_primitive() == \
           (1, 3**(Mul(Rational(1, 2), 1 + y, evaluate=False)))
    assert (5**Rational(3, 4)).as_content_primitive() == (1, 5**Rational(3, 4))
    assert (5**Rational(7, 4)).as_content_primitive() == (5, 5**Rational(3, 4))
    assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).as_content_primitive() == \
              (Rational(1, 14), 7.0*x + 21*y + 10*z)
    assert (2**Rational(3, 4) + root(2, 4)*sqrt(3)).as_content_primitive(radical=True) == \
           (1, root(2, 4)*(sqrt(2) + sqrt(3)))
Example #2
0
def test_factor_terms():
    A = Symbol('A', commutative=False)
    assert factor_terms(9*(x + x*y + 1) + (3*x + 3)**(2 + 2*x)) == \
        9*x*y + 9*x + _keep_coeff(Integer(3), x + 1)**_keep_coeff(Integer(2), x + 1) + 9
    assert factor_terms(9*(x + x*y + 1) + (3)**(2 + 2*x)) == \
        _keep_coeff(Integer(9), 3**(2*x) + x*y + x + 1)
    assert factor_terms(3**(2 + 2*x) + a*3**(2 + 2*x)) == \
        9*3**(2*x)*(a + 1)
    assert factor_terms(x + x*A) == \
        x*(1 + A)
    assert factor_terms(sin(x + x*A)) == \
        sin(x*(1 + A))
    assert factor_terms((3*x + 3)**((2 + 2*x)/3)) == \
        _keep_coeff(Integer(3), x + 1)**_keep_coeff(Rational(2, 3), x + 1)
    assert factor_terms(x + (x*y + x)**(3*x + 3)) == \
        x + (x*(y + 1))**_keep_coeff(Integer(3), x + 1)
    assert factor_terms(a*(x + x*y) + b*(x*2 + y*x*2)) == \
        x*(a + 2*b)*(y + 1)
    i = Integral(x, (x, 0, oo))
    assert factor_terms(i) == i

    # check radical extraction
    eq = sqrt(2) + sqrt(10)
    assert factor_terms(eq) == eq
    assert factor_terms(eq, radical=True) == sqrt(2) * (1 + sqrt(5))
    eq = root(-6, 3) + root(6, 3)
    assert factor_terms(
        eq, radical=True) == 6**Rational(1, 3) * (1 + (-1)**Rational(1, 3))

    eq = [x + x * y]
    ans = [x * (y + 1)]
    for c in [list, tuple, set]:
        assert factor_terms(c(eq)) == c(ans)
    assert factor_terms(Tuple(x + x * y)) == Tuple(x * (y + 1))
    assert factor_terms(Interval(0, 1)) == Interval(0, 1)
    e = 1 / sqrt(a / 2 + 1)
    assert factor_terms(e, clear=False) == 1 / sqrt(a / 2 + 1)
    assert factor_terms(e, clear=True) == sqrt(2) / sqrt(a + 2)

    eq = x / (x + 1 / x) + 1 / (x**2 + 1)
    assert factor_terms(eq, fraction=False) == eq
    assert factor_terms(eq, fraction=True) == 1

    assert factor_terms((1/(x**3 + x**2) + 2/x**2)*y) == \
        y*(2 + 1/(x + 1))/x**2

    # if not True, then processesing for this in factor_terms is not necessary
    assert gcd_terms(-x - y) == -x - y
    assert factor_terms(-x - y) == Mul(-1, x + y, evaluate=False)

    # if not True, then "special" processesing in factor_terms is not necessary
    assert gcd_terms(exp(Mul(-1, x + 1))) == exp(-x - 1)
    e = exp(-x - 2) + x
    assert factor_terms(e) == exp(Mul(-1, x + 2, evaluate=False)) + x
    assert factor_terms(e, sign=False) == e
    assert factor_terms(exp(-4 * x - 2) -
                        x) == -x + exp(Mul(-2, 2 * x + 1, evaluate=False))
Example #3
0
    def _print_Mul(self, expr):

        prec = precedence(expr)

        c, e = expr.as_coeff_Mul()
        if c < 0:
            expr = _keep_coeff(-c, e)
            sign = "-"
        else:
            sign = ""

        a = []  # items in the numerator
        b = []  # items that are in the denominator (if any)

        if self.order != 'none':
            args = expr.as_ordered_factors()
        else:
            # use make_args in case expr was something like -x -> x
            args = Mul.make_args(expr)

        multiple_ones = len([x for x in args if x == S.One]) > 1

        # Gather args for numerator/denominator
        for item in args:
            if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
                if item.exp != -1:
                    b.append(Pow(item.base, -item.exp, evaluate=False))
                else:
                    b.append(Pow(item.base, -item.exp))
            elif item.is_Rational and item is not S.Infinity:
                if item.p != 1 or multiple_ones:
                    a.append(Rational(item.p))
                if item.q != 1:
                    b.append(Rational(item.q))
            else:
                a.append(item)

        a = a or [S.One]

        a_str = [self.parenthesize(x, prec) for x in a]
        b_str = [self.parenthesize(x, prec) for x in b]

        if len(b) == 0:
            return sign + '*'.join(a_str)
        elif len(b) == 1:
            return sign + '*'.join(a_str) + "/" + b_str[0]
        else:
            return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
Example #4
0
def test_factor_terms():
    A = Symbol('A', commutative=False)
    assert factor_terms(9*(x + x*y + 1) + (3*x + 3)**(2 + 2*x)) == \
        9*x*y + 9*x + _keep_coeff(Integer(3), x + 1)**_keep_coeff(Integer(2), x + 1) + 9
    assert factor_terms(9*(x + x*y + 1) + 3**(2 + 2*x)) == \
        _keep_coeff(Integer(9), 3**(2*x) + x*y + x + 1)
    assert factor_terms(3**(2 + 2*x) + a*3**(2 + 2*x)) == \
        9*3**(2*x)*(a + 1)
    assert factor_terms(x + x*A) == \
        x*(1 + A)
    assert factor_terms(sin(x + x*A)) == \
        sin(x*(1 + A))
    assert factor_terms((3*x + 3)**((2 + 2*x)/3)) == \
        _keep_coeff(Integer(3), x + 1)**_keep_coeff(Rational(2, 3), x + 1)
    assert factor_terms(x + (x*y + x)**(3*x + 3)) == \
        x + (x*(y + 1))**_keep_coeff(Integer(3), x + 1)
    assert factor_terms(a*(x + x*y) + b*(x*2 + y*x*2)) == \
        x*(a + 2*b)*(y + 1)
    i = Integral(x, (x, 0, oo))
    assert factor_terms(i) == i

    # check radical extraction
    eq = sqrt(2) + sqrt(10)
    assert factor_terms(eq) == eq
    assert factor_terms(eq, radical=True) == sqrt(2)*(1 + sqrt(5))
    eq = root(-6, 3) + root(6, 3)
    assert factor_terms(eq, radical=True) == cbrt(6)*(1 + cbrt(-1))

    eq = [x + x*y]
    ans = [x*(y + 1)]
    for c in [list, tuple, set]:
        assert factor_terms(c(eq)) == c(ans)
    assert factor_terms(Tuple(x + x*y)) == Tuple(x*(y + 1))
    assert factor_terms(Interval(0, 1)) == Interval(0, 1)
    e = 1/sqrt(a/2 + 1)
    assert factor_terms(e, clear=False) == 1/sqrt(a/2 + 1)
    assert factor_terms(e, clear=True) == sqrt(2)/sqrt(a + 2)

    eq = x/(x + 1/x) + 1/(x**2 + 1)
    assert factor_terms(eq, fraction=False) == eq
    assert factor_terms(eq, fraction=True) == 1

    assert factor_terms((1/(x**3 + x**2) + 2/x**2)*y) == \
        y*(2 + 1/(x + 1))/x**2

    # if not True, then processesing for this in factor_terms is not necessary
    assert gcd_terms(-x - y) == -x - y
    assert factor_terms(-x - y) == Mul(-1, x + y, evaluate=False)

    # if not True, then "special" processesing in factor_terms is not necessary
    assert gcd_terms(exp(Mul(-1, x + 1))) == exp(-x - 1)
    e = exp(-x - 2) + x
    assert factor_terms(e) == exp(Mul(-1, x + 2, evaluate=False)) + x
    assert factor_terms(e, sign=False) == e
    assert factor_terms(exp(-4*x - 2) - x) == -x + exp(Mul(-2, 2*x + 1, evaluate=False))
Example #5
0
 def nc_gcd(aa, bb):
     a, b = [i.as_coeff_Mul() for i in [aa, bb]]
     c = gcd(a[0], b[0]).as_numer_denom()[0]
     g = Mul(*(a[1].args_cnc(cset=True)[0] & b[1].args_cnc(cset=True)[0]))
     return _keep_coeff(c, g)
Example #6
0
def _denest_pow(eq):
    """
    Denest powers.

    This is a helper function for powdenest that performs the actual
    transformation.
    """
    from diofant.simplify.simplify import logcombine

    b, e = eq.as_base_exp()
    if b.is_Pow and e != 1:
        new = b._eval_power(e)
        if new is not None:
            eq = new
            b, e = new.as_base_exp()

    # denest exp with log terms in exponent
    if b is S.Exp1 and e.is_Mul:
        logs = []
        other = []
        for ei in e.args:
            if any(ai.func is log for ai in Add.make_args(ei)):
                logs.append(ei)
            else:
                other.append(ei)
        logs = logcombine(Mul(*logs))
        return Pow(exp(logs), Mul(*other))

    _, be = b.as_base_exp()
    if be is S.One and not (b.is_Mul or b.is_Rational and b.q != 1
                            or b.is_positive):
        return eq

    # denest eq which is either pos**e or Pow**e or Mul**e or
    # Mul(b1**e1, b2**e2)

    # handle polar numbers specially
    polars, nonpolars = [], []
    for bb in Mul.make_args(b):
        if bb.is_polar:
            polars.append(bb.as_base_exp())
        else:
            nonpolars.append(bb)
    if len(polars) == 1 and not polars[0][0].is_Mul:
        return Pow(polars[0][0], polars[0][1] * e) * powdenest(
            Mul(*nonpolars)**e)
    elif polars:
        return Mul(*[powdenest(bb**(ee*e)) for (bb, ee) in polars]) \
            * powdenest(Mul(*nonpolars)**e)

    if b.is_Integer:
        # use log to see if there is a power here
        logb = expand_log(log(b))
        if logb.is_Mul:
            c, logb = logb.args
            e *= c
            base = logb.args[0]
            return Pow(base, e)

    # if b is not a Mul or any factor is an atom then there is nothing to do
    if not b.is_Mul or any(s.is_Atom for s in Mul.make_args(b)):
        return eq

    # let log handle the case of the base of the argument being a Mul, e.g.
    # sqrt(x**(2*i)*y**(6*i)) -> x**i*y**(3**i) if x and y are positive; we
    # will take the log, expand it, and then factor out the common powers that
    # now appear as coefficient. We do this manually since terms_gcd pulls out
    # fractions, terms_gcd(x+x*y/2) -> x*(y + 2)/2 and we don't want the 1/2;
    # gcd won't pull out numerators from a fraction: gcd(3*x, 9*x/2) -> x but
    # we want 3*x. Neither work with noncommutatives.

    def nc_gcd(aa, bb):
        a, b = [i.as_coeff_Mul() for i in [aa, bb]]
        c = gcd(a[0], b[0]).as_numer_denom()[0]
        g = Mul(*(a[1].args_cnc(cset=True)[0] & b[1].args_cnc(cset=True)[0]))
        return _keep_coeff(c, g)

    glogb = expand_log(log(b))
    if glogb.is_Add:
        args = glogb.args
        g = reduce(nc_gcd, args)
        if g != 1:
            cg, rg = g.as_coeff_Mul()
            glogb = _keep_coeff(cg, rg * Add(*[a / g for a in args]))

    # now put the log back together again
    if glogb.func is log or not glogb.is_Mul:
        if glogb.args[0].is_Pow:
            glogb = _denest_pow(glogb.args[0])
            if (abs(glogb.exp) < 1) is S.true:
                return Pow(glogb.base, glogb.exp * e)
        return eq

    # the log(b) was a Mul so join any adds with logcombine
    add = []
    other = []
    for a in glogb.args:
        if a.is_Add:
            add.append(a)
        else:
            other.append(a)
    return Pow(exp(logcombine(Mul(*add))), e * Mul(*other))
Example #7
0
def collect_const(expr, *vars, **kwargs):
    """A non-greedy collection of terms with similar number coefficients in
    an Add expr. If ``vars`` is given then only those constants will be
    targeted. Although any Number can also be targeted, if this is not
    desired set ``Numbers=False`` and no Float or Rational will be collected.

    Examples
    ========

    >>> from diofant import sqrt
    >>> from diofant.abc import a, s, x, y, z
    >>> from diofant.simplify.radsimp import collect_const
    >>> collect_const(sqrt(3) + sqrt(3)*(1 + sqrt(2)))
    sqrt(3)*(sqrt(2) + 2)
    >>> collect_const(sqrt(3)*s + sqrt(7)*s + sqrt(3) + sqrt(7))
    (sqrt(3) + sqrt(7))*(s + 1)
    >>> s = sqrt(2) + 2
    >>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7))
    (sqrt(2) + 3)*(sqrt(3) + sqrt(7))
    >>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7), sqrt(3))
    sqrt(7) + sqrt(3)*(sqrt(2) + 3) + sqrt(7)*(sqrt(2) + 2)

    The collection is sign-sensitive, giving higher precedence to the
    unsigned values:

    >>> collect_const(x - y - z)
    x - (y + z)
    >>> collect_const(-y - z)
    -(y + z)
    >>> collect_const(2*x - 2*y - 2*z, 2)
    2*(x - y - z)
    >>> collect_const(2*x - 2*y - 2*z, -2)
    2*x - 2*(y + z)

    See Also
    ========
    collect, collect_sqrt, rcollect
    """
    if not expr.is_Add:
        return expr

    recurse = False
    Numbers = kwargs.get('Numbers', True)

    if not vars:
        recurse = True
        vars = set()
        for a in expr.args:
            for m in Mul.make_args(a):
                if m.is_number:
                    vars.add(m)
    else:
        vars = sympify(vars)
    if not Numbers:
        vars = [v for v in vars if not v.is_Number]

    vars = list(ordered(vars))
    for v in vars:
        terms = defaultdict(list)
        Fv = Factors(v)
        for m in Add.make_args(expr):
            f = Factors(m)
            q, r = f.div(Fv)
            if r.is_one:
                # only accept this as a true factor if
                # it didn't change an exponent from an Integer
                # to a non-Integer, e.g. 2/sqrt(2) -> sqrt(2)
                # -- we aren't looking for this sort of change
                fwas = f.factors.copy()
                fnow = q.factors
                if not any(k in fwas and fwas[k].is_Integer
                           and not fnow[k].is_Integer for k in fnow):
                    terms[v].append(q.as_expr())
                    continue
            terms[S.One].append(m)

        args = []
        hit = False
        uneval = False
        for k in ordered(terms):
            v = terms[k]
            if k is S.One:
                args.extend(v)
                continue

            if len(v) > 1:
                v = Add(*v)
                hit = True
                if recurse and v != expr:
                    vars.append(v)
            else:
                v = v[0]

            # be careful not to let uneval become True unless
            # it must be because it's going to be more expensive
            # to rebuild the expression as an unevaluated one
            if Numbers and k.is_Number and v.is_Add:
                args.append(_keep_coeff(k, v, sign=True))
                uneval = True
            else:
                args.append(k * v)

        if hit:
            if uneval:
                expr = _unevaluated_Add(*args)
            else:
                expr = Add(*args)
            if not expr.is_Add:
                break

    return expr