Example #1
0
    def _eval_expand_func(self, **hints):
        n, z = self.args

        if n.is_Integer and n.is_nonnegative:
            if z.is_Add:
                coeff = z.args[0]
                if coeff.is_Integer:
                    e = -(n + 1)
                    if coeff > 0:
                        tail = Add(
                            *[Pow(z - i, e) for i in range(1,
                                                           int(coeff) + 1)])
                    else:
                        tail = -Add(
                            *[Pow(z + i, e) for i in range(0, int(-coeff))])
                    return polygamma(n,
                                     z - coeff) + (-1)**n * factorial(n) * tail

            elif z.is_Mul:
                coeff, z = z.as_two_terms()
                if coeff.is_Integer and coeff.is_positive:
                    tail = [
                        polygamma(n, z + Rational(i, coeff))
                        for i in range(0, int(coeff))
                    ]
                    if n == 0:
                        return Add(*tail) / coeff + log(coeff)
                    else:
                        return Add(*tail) / coeff**(n + 1)
                z *= coeff

        return polygamma(n, z)
Example #2
0
 def _eval_rewrite_as_besseli(self, z):
     ot = Rational(1, 3)
     tt = Rational(2, 3)
     a = Pow(z, Rational(3, 2))
     if re(z).is_positive:
         return ot * sqrt(z) * (besseli(-ot, tt * a) - besseli(ot, tt * a))
     else:
         return ot * (Pow(a, ot) * besseli(-ot, tt * a) -
                      z * Pow(a, -ot) * besseli(ot, tt * a))
Example #3
0
 def _eval_rewrite_as_besseli(self, z):
     ot = Rational(1, 3)
     tt = Rational(2, 3)
     a = tt * Pow(z, Rational(3, 2))
     if re(z).is_positive:
         return z / sqrt(3) * (besseli(-tt, a) + besseli(tt, a))
     else:
         a = Pow(z, Rational(3, 2))
         b = Pow(a, tt)
         c = Pow(a, -tt)
         return sqrt(ot) * (b * besseli(-tt, tt * a) +
                            z**2 * c * besseli(tt, tt * a))
Example #4
0
 def _eval_rewrite_as_besseli(self, z):
     ot = Rational(1, 3)
     tt = Rational(2, 3)
     a = tt * Pow(z, Rational(3, 2))
     if re(z).is_positive:
         return z / 3 * (besseli(tt, a) - besseli(-tt, a))
     else:
         a = Pow(z, Rational(3, 2))
         b = Pow(a, tt)
         c = Pow(a, -tt)
         return ot * (z**2 * c * besseli(tt, tt * a) -
                      b * besseli(-ot, tt * a))
Example #5
0
 def _eval_rewrite_as_besseli(self, z):
     ot = Rational(1, 3)
     tt = Rational(2, 3)
     a = Pow(z, Rational(3, 2))
     if re(z).is_positive:
         return sqrt(z) / sqrt(3) * (besseli(-ot, tt * a) +
                                     besseli(ot, tt * a))
     else:
         b = Pow(a, ot)
         c = Pow(a, -ot)
         return sqrt(ot) * (b * besseli(-ot, tt * a) +
                            z * c * besseli(ot, tt * a))
Example #6
0
def exp(arg, **kwargs):
    """
    The exponential function, :math:`e^x`.

    See Also
    ========

    diofant.functions.elementary.exponential.log
    """
    return Pow(S.Exp1, arg, **kwargs)
Example #7
0
 def _sqrt(d):
     # remove squares from square root since both will be represented
     # in the results; a similar thing is happening in roots() but
     # must be duplicated here because not all quadratics are binomials
     co = []
     other = []
     for di in Mul.make_args(d):
         if di.is_Pow and di.exp.is_Integer and di.exp % 2 == 0:
             co.append(Pow(di.base, di.exp//2))
         else:
             other.append(di)
     if co:
         d = Mul(*other)
         co = Mul(*co)
         return co*sqrt(d)
     return sqrt(d)
Example #8
0
def test_core_power():
    for c in (Pow, Pow(x, 4)):
        check(c)
Example #9
0
def factorint(n,
              limit=None,
              use_trial=True,
              use_rho=True,
              use_pm1=True,
              verbose=False,
              visual=None):
    r"""
    Given a positive integer ``n``, ``factorint(n)`` returns a dict containing
    the prime factors of ``n`` as keys and their respective multiplicities
    as values. For example:

    >>> from diofant.ntheory import factorint
    >>> factorint(2000)    # 2000 = (2**4) * (5**3)
    {2: 4, 5: 3}
    >>> factorint(65537)   # This number is prime
    {65537: 1}

    For input less than 2, factorint behaves as follows:

        - ``factorint(1)`` returns the empty factorization, ``{}``
        - ``factorint(0)`` returns ``{0:1}``
        - ``factorint(-n)`` adds ``-1:1`` to the factors and then factors ``n``

    Partial Factorization:

    If ``limit`` (> 3) is specified, the search is stopped after performing
    trial division up to (and including) the limit (or taking a
    corresponding number of rho/p-1 steps). This is useful if one has
    a large number and only is interested in finding small factors (if
    any). Note that setting a limit does not prevent larger factors
    from being found early; it simply means that the largest factor may
    be composite. Since checking for perfect power is relatively cheap, it is
    done regardless of the limit setting.

    This number, for example, has two small factors and a huge
    semi-prime factor that cannot be reduced easily:

    >>> from diofant.ntheory import isprime
    >>> a = 1407633717262338957430697921446883
    >>> f = factorint(a, limit=10000)
    >>> f == {991: 1, int(202916782076162456022877024859): 1, 7: 1}
    True
    >>> isprime(max(f))
    False

    This number has a small factor and a residual perfect power whose
    base is greater than the limit:

    >>> factorint(3*101**7, limit=5)
    {3: 1, 101: 7}

    Visual Factorization:

    If ``visual`` is set to ``True``, then it will return a visual
    factorization of the integer.  For example:

    >>> from diofant import pprint
    >>> pprint(factorint(4200, visual=True), use_unicode=False)
     3  1  2  1
    2 *3 *5 *7

    Note that this is achieved by using the evaluate=False flag in Mul
    and Pow. If you do other manipulations with an expression where
    evaluate=False, it may evaluate.  Therefore, you should use the
    visual option only for visualization, and use the normal dictionary
    returned by visual=False if you want to perform operations on the
    factors.

    You can easily switch between the two forms by sending them back to
    factorint:

    >>> from diofant import Mul, Pow
    >>> regular = factorint(1764); regular
    {2: 2, 3: 2, 7: 2}
    >>> pprint(factorint(regular), use_unicode=False)
     2  2  2
    2 *3 *7

    >>> visual = factorint(1764, visual=True); pprint(visual, use_unicode=False)
     2  2  2
    2 *3 *7
    >>> print(factorint(visual))
    {2: 2, 3: 2, 7: 2}

    If you want to send a number to be factored in a partially factored form
    you can do so with a dictionary or unevaluated expression:

    >>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form
    {2: 10, 3: 3}
    >>> factorint(Mul(4, 12, evaluate=False))
    {2: 4, 3: 1}

    The table of the output logic is:

        ====== ====== ======= =======
                       Visual
        ------ ----------------------
        Input  True   False   other
        ====== ====== ======= =======
        dict    mul    dict    mul
        n       mul    dict    dict
        mul     mul    dict    dict
        ====== ====== ======= =======

    Notes
    =====

    The function switches between multiple algorithms. Trial division
    quickly finds small factors (of the order 1-5 digits), and finds
    all large factors if given enough time. The Pollard rho and p-1
    algorithms are used to find large factors ahead of time; they
    will often find factors of the order of 10 digits within a few
    seconds:

    >>> factors = factorint(12345678910111213141516)
    >>> for base, exp in sorted(factors.items()):
    ...     print('%s %s' % (base, exp))
    ...
    2 2
    2507191691 1
    1231026625769 1

    Any of these methods can optionally be disabled with the following
    boolean parameters:

        - ``use_trial``: Toggle use of trial division
        - ``use_rho``: Toggle use of Pollard's rho method
        - ``use_pm1``: Toggle use of Pollard's p-1 method

    ``factorint`` also periodically checks if the remaining part is
    a prime number or a perfect power, and in those cases stops.


    If ``verbose`` is set to ``True``, detailed progress is printed.

    See Also
    ========

    smoothness, smoothness_p, divisors
    """
    factordict = {}
    if visual and not isinstance(n, Mul) and not isinstance(n, dict):
        factordict = factorint(n,
                               limit=limit,
                               use_trial=use_trial,
                               use_rho=use_rho,
                               use_pm1=use_pm1,
                               verbose=verbose,
                               visual=False)
    elif isinstance(n, Mul):
        factordict = {
            int(k): int(v)
            for k, v in list(n.as_powers_dict().items())
        }
    elif isinstance(n, dict):
        factordict = n
    if factordict and (isinstance(n, Mul) or isinstance(n, dict)):
        # check it
        for k in list(factordict.keys()):
            if isprime(k):
                continue
            e = factordict.pop(k)
            d = factorint(k,
                          limit=limit,
                          use_trial=use_trial,
                          use_rho=use_rho,
                          use_pm1=use_pm1,
                          verbose=verbose,
                          visual=False)
            for k, v in d.items():
                if k in factordict:
                    factordict[k] += v * e
                else:
                    factordict[k] = v * e
    if visual or (type(n) is dict and visual is not True
                  and visual is not False):
        if factordict == {}:
            return S.One
        if -1 in factordict:
            factordict.pop(-1)
            args = [S.NegativeOne]
        else:
            args = []
        args.extend(
            [Pow(*i, evaluate=False) for i in sorted(factordict.items())])
        return Mul(*args, evaluate=False)
    elif isinstance(n, dict) or isinstance(n, Mul):
        return factordict

    assert use_trial or use_rho or use_pm1

    n = as_int(n)
    if limit:
        limit = int(limit)

    # special cases
    if n < 0:
        factors = factorint(-n,
                            limit=limit,
                            use_trial=use_trial,
                            use_rho=use_rho,
                            use_pm1=use_pm1,
                            verbose=verbose,
                            visual=False)
        factors[-1] = 1
        return factors

    if limit and limit < 2:
        if n == 1:
            return {}
        return {n: 1}
    elif n < 10:
        # doing this we are assured of getting a limit > 2
        # when we have to compute it later
        return [{
            0: 1
        }, {}, {
            2: 1
        }, {
            3: 1
        }, {
            2: 2
        }, {
            5: 1
        }, {
            2: 1,
            3: 1
        }, {
            7: 1
        }, {
            2: 3
        }, {
            3: 2
        }][n]

    factors = {}

    # do simplistic factorization
    if verbose:
        sn = str(n)
        if len(sn) > 50:
            print('Factoring %s' % sn[:5] + '..(%i other digits)..' %
                  (len(sn) - 10) + sn[-5:])
        else:
            print('Factoring', n)

    if use_trial:
        # this is the preliminary factorization for small factors
        small = 2**15
        fail_max = 600
        small = min(small, limit or small)
        if verbose:
            print(trial_int_msg % (2, small, fail_max))
        n, next_p = _factorint_small(factors, n, small, fail_max)
    else:
        next_p = 2
    if factors and verbose:
        for k in sorted(factors):
            print(factor_msg % (k, factors[k]))
    if next_p == 0:
        if n > 1:
            factors[int(n)] = 1
        if verbose:
            print(complete_msg)
        return factors

    # continue with more advanced factorization methods

    # first check if the simplistic run didn't finish
    # because of the limit and check for a perfect
    # power before exiting
    try:
        if limit and next_p > limit:
            if verbose:
                print('Exceeded limit:', limit)

            _check_termination(factors, n, limit, use_trial, use_rho, use_pm1,
                               verbose)

            if n > 1:
                factors[int(n)] = 1
            return factors
        else:
            # Before quitting (or continuing on)...

            # ...do a Fermat test since it's so easy and we need the
            # square root anyway. Finding 2 factors is easy if they are
            # "close enough." This is the big root equivalent of dividing by
            # 2, 3, 5.
            sqrt_n = integer_nthroot(n, 2)[0]
            a = sqrt_n + 1
            a2 = a**2
            b2 = a2 - n
            for i in range(3):
                b, fermat = integer_nthroot(b2, 2)
                if fermat:
                    break
                b2 += 2 * a + 1  # equiv to (a+1)**2 - n
                a += 1
            if fermat:
                if verbose:
                    print(fermat_msg)
                if limit:
                    limit -= 1
                for r in [a - b, a + b]:
                    facs = factorint(r,
                                     limit=limit,
                                     use_trial=use_trial,
                                     use_rho=use_rho,
                                     use_pm1=use_pm1,
                                     verbose=verbose)
                    factors.update(facs)
                raise StopIteration

            # ...see if factorization can be terminated
            _check_termination(factors, n, limit, use_trial, use_rho, use_pm1,
                               verbose)

    except StopIteration:
        if verbose:
            print(complete_msg)
        return factors

    # these are the limits for trial division which will
    # be attempted in parallel with pollard methods
    low, high = next_p, 2 * next_p

    limit = limit or sqrt_n
    # add 1 to make sure limit is reached in primerange calls
    limit += 1

    while 1:

        try:
            high_ = high
            if limit < high_:
                high_ = limit

            # Trial division
            if use_trial:
                if verbose:
                    print(trial_msg % (low, high_))
                ps = sieve.primerange(low, high_)
                n, found_trial = _trial(factors, n, ps, verbose)
                if found_trial:
                    _check_termination(factors, n, limit, use_trial, use_rho,
                                       use_pm1, verbose)
            else:
                found_trial = False

            if high > limit:
                if verbose:
                    print('Exceeded limit:', limit)
                if n > 1:
                    factors[int(n)] = 1
                raise StopIteration

            # Only used advanced methods when no small factors were found
            if not found_trial:
                if (use_pm1 or use_rho):
                    high_root = max(int(math.log(high_**0.7)), low, 3)

                    # Pollard p-1
                    if use_pm1:
                        if verbose:
                            print(pm1_msg % (high_root, high_))
                        c = pollard_pm1(n, B=high_root, seed=high_)
                        if c:
                            # factor it and let _trial do the update
                            ps = factorint(c,
                                           limit=limit - 1,
                                           use_trial=use_trial,
                                           use_rho=use_rho,
                                           use_pm1=use_pm1,
                                           verbose=verbose)
                            n, _ = _trial(factors, n, ps, verbose=False)
                            _check_termination(factors, n, limit, use_trial,
                                               use_rho, use_pm1, verbose)

                    # Pollard rho
                    if use_rho:
                        max_steps = high_root
                        if verbose:
                            print(rho_msg % (1, max_steps, high_))
                        c = pollard_rho(n,
                                        retries=1,
                                        max_steps=max_steps,
                                        seed=high_)
                        if c:
                            # factor it and let _trial do the update
                            ps = factorint(c,
                                           limit=limit - 1,
                                           use_trial=use_trial,
                                           use_rho=use_rho,
                                           use_pm1=use_pm1,
                                           verbose=verbose)
                            n, _ = _trial(factors, n, ps, verbose=False)
                            _check_termination(factors, n, limit, use_trial,
                                               use_rho, use_pm1, verbose)

        except StopIteration:
            if verbose:
                print(complete_msg)
            return factors

        low, high = high, high * 2
Example #10
0
 def _eval_rewrite_as_besselj(self, z):
     ot = Rational(1, 3)
     tt = Rational(2, 3)
     a = Pow(-z, Rational(3, 2))
     if re(z).is_negative:
         return ot * sqrt(-z) * (besselj(-ot, tt * a) + besselj(ot, tt * a))
Example #11
0
 def _eval_rewrite_as_besselj(self, z):
     tt = Rational(2, 3)
     a = tt * Pow(-z, Rational(3, 2))
     if re(z).is_negative:
         return -z / sqrt(3) * (besselj(-tt, a) + besselj(tt, a))
Example #12
0
 def _eval_rewrite_as_besselj(self, z):
     tt = Rational(2, 3)
     a = Pow(-z, Rational(3, 2))
     if re(z).is_negative:
         return z / 3 * (besselj(-tt, tt * a) - besselj(tt, tt * a))