def test_PolyElement___sub__(): Rt, t = ring("t", ZZ) Ruv, u, v = ring("u,v", ZZ) Rxyz, x, y, z = ring("x,y,z", Ruv) assert u - x == -x + u assert (x + u) - 2*u == x - u assert dict(x - 3*y) == {(1, 0, 0): 1, (0, 1, 0): -3} assert dict(-u + x) == dict(x - u) == {(1, 0, 0): 1, (0, 0, 0): -u} assert dict(-u + x*y) == dict(x*y - u) == {(1, 1, 0): 1, (0, 0, 0): -u} assert dict(-u + x*y + z) == dict(x*y + z - u) == {(1, 1, 0): 1, (0, 0, 1): 1, (0, 0, 0): -u} assert dict(-u*x + x) == dict(x - u*x) == {(1, 0, 0): -u + 1} assert dict(-u*x + x*y) == dict(x*y - u*x) == {(1, 1, 0): 1, (1, 0, 0): -u} assert dict(-u*x + x*y + z) == dict(x*y + z - u*x) == {(1, 1, 0): 1, (0, 0, 1): 1, (1, 0, 0): -u} pytest.raises(TypeError, lambda: t - x) pytest.raises(TypeError, lambda: x - t) pytest.raises(TypeError, lambda: t - u) pytest.raises(TypeError, lambda: u - t) Fuv, u, v = field("u,v", ZZ) Rxyz, x, y, z = ring("x,y,z", Fuv) assert dict(-u + x) == dict(x - u) == {(1, 0, 0): 1, (0, 0, 0): -u} Rxyz, x, y, z = ring("x,y,z", EX) assert dict(-EX(pi) + x*y*z) == dict(x*y*z - EX(pi)) == {(1, 1, 1): EX(1), (0, 0, 0): -EX(pi)}
def test_Domain_interface(): pytest.raises(TypeError, lambda: DomainElement().parent) assert RR(1).parent is RR assert CC(1).parent is CC assert RR.has_default_precision assert CC.has_default_precision RR3 = RealField(prec=53, dps=3) assert str(RR3(1.7611107002)) == '1.76' assert RealField(tol=3).tolerance == 3.0 assert RealField(tol=0.1).tolerance == 0.1 assert RealField(tol="0.1").tolerance == 0.1 pytest.raises(ValueError, lambda: RealField(tol=object())) pytest.raises(AttributeError, lambda: CC.ring) pytest.raises(DomainError, lambda: CC.get_exact()) assert str(EX(1)) == 'EX(1)' assert EX(1).as_expr() == Integer(1) assert bool(EX(1)) is True assert bool(EX(0)) is False
def test_EX(): assert EX.is_positive(EX(2)) assert EX.is_nonnegative(EX(2)) assert EX.is_negative(EX(-1)) assert EX.is_nonpositive(EX(-1)) assert (EX(1) / 2).numerator == 1 assert (EX(1) / 2).denominator == 2
def test_dmp_lift(): A = QQ.algebraic_field(I) f = [A(1), A(0), A(0), A(I), A(17*I)] assert dmp_lift(f, 0, A) == [1, 0, 0, 0, 0, 0, 2, 0, 578, 0, 0, 0, 1, 0, -578, 0, 83521] pytest.raises(DomainError, lambda: dmp_lift([EX(1), EX(2)], 0, EX))
def test_EX(): assert EX.is_positive(EX(2)) assert EX.is_nonnegative(EX(2)) assert EX.is_negative(EX(-1)) assert EX.is_nonpositive(EX(-1)) assert (EX(1)/2).numerator == 1 assert (EX(1)/2).denominator == 2
def test___eq__(): assert not QQ.poly_ring(x) == ZZ.poly_ring(x) assert not QQ.frac_field(x) == ZZ.frac_field(x) assert EX(1) != EX(2) F11 = FF(11) assert F11(2) != F11(3) assert F11(2) != object()
def test_composite_option(): assert construct_domain({(1, ): sin(y)}, composite=False) == (EX, { (1, ): EX(sin(y)) }) assert construct_domain({(1, ): y}, composite=False) == (EX, { (1, ): EX(y) }) assert construct_domain({(1, 1): 1}, composite=False) == (ZZ, {(1, 1): 1}) assert construct_domain({(1, 0): y}, composite=False) == (EX, { (1, 0): EX(y) })
def test_Domain_convert(): assert QQ.convert(10e-52) == QQ( 1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576) R, x = ring("x", ZZ) assert ZZ.convert(x - x) == 0 assert ZZ.convert(x - x, R) == 0 F3 = FF(3) assert F3.convert(Float(2.0)) == F3.dtype(2) assert F3.convert(PythonRational(2, 1)) == F3.dtype(2) pytest.raises(CoercionFailed, lambda: F3.convert(PythonRational(1, 2))) assert F3.convert(2.0) == F3.dtype(2) pytest.raises(CoercionFailed, lambda: F3.convert(2.1)) assert RR.convert(CC(1)) == RR(1) pytest.raises(CoercionFailed, lambda: RR.convert(CC(1, 2))) assert QQ.convert(ALG(1), ALG) == QQ(1) pytest.raises(CoercionFailed, lambda: QQ.convert(ALG([1, 1]), ALG)) assert ZZ.convert(ALG(1), ALG) == ZZ(1) pytest.raises(CoercionFailed, lambda: ZZ.convert(ALG([1, 1]), ALG)) assert EX.convert(ALG([1, 1]), ALG) == sqrt(2) + sqrt(3) + 1 ALG2 = QQ.algebraic_field(sqrt(2)) a2 = ALG2.convert(sqrt(2)) a = ALG.convert(a2, ALG2) assert a.rep.to_dense() == [QQ(1, 2), 0, -QQ(9, 2), 0] assert RR.convert(a) == RR(1.4142135623730951) assert CC.convert(a) == CC(1.4142135623730951) assert ZZ_python.convert(3.0) == ZZ_python.dtype(3) pytest.raises(CoercionFailed, lambda: ZZ_python.convert(3.2)) assert CC.convert(QQ_python(1, 2)) == CC(0.5) CC01 = ComplexField(tol=0.1) assert CC.convert(CC01(0.3)) == CC(0.3) assert RR.convert(complex(2 + 0j)) == RR(2) pytest.raises(CoercionFailed, lambda: RR.convert(complex(2 + 3j))) assert ALG.convert(EX(sqrt(2)), EX) == ALG.from_expr(sqrt(2)) pytest.raises(CoercionFailed, lambda: ALG.convert(EX(sqrt(5)), EX)) pytest.raises(CoercionFailed, lambda: ALG2.convert(ALG.unit))
def test_PolyElement___mul__(): Rt, t = ring("t", ZZ) Ruv, u, v = ring("u,v", ZZ) Rxyz, x, y, z = ring("x,y,z", Ruv) assert dict(u*x) == dict(x*u) == {(1, 0, 0): u} assert dict(2*u*x + z) == dict(x*2*u + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1} assert dict(u*2*x + z) == dict(2*x*u + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1} assert dict(2*u*x + z) == dict(x*2*u + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1} assert dict(u*x*2 + z) == dict(x*u*2 + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1} assert dict(2*u*x*y + z) == dict(x*y*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1} assert dict(u*2*x*y + z) == dict(2*x*y*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1} assert dict(2*u*x*y + z) == dict(x*y*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1} assert dict(u*x*y*2 + z) == dict(x*y*u*2 + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1} assert dict(2*u*y*x + z) == dict(y*x*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1} assert dict(u*2*y*x + z) == dict(2*y*x*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1} assert dict(2*u*y*x + z) == dict(y*x*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1} assert dict(u*y*x*2 + z) == dict(y*x*u*2 + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1} assert dict(3*u*(x + y) + z) == dict((x + y)*3*u + z) == {(1, 0, 0): 3*u, (0, 1, 0): 3*u, (0, 0, 1): 1} pytest.raises(TypeError, lambda: t*x + z) pytest.raises(TypeError, lambda: x*t + z) pytest.raises(TypeError, lambda: t*u + z) pytest.raises(TypeError, lambda: u*t + z) Fuv, u, v = field("u,v", ZZ) Rxyz, x, y, z = ring("x,y,z", Fuv) assert dict(u*x) == dict(x*u) == {(1, 0, 0): u} Rxyz, x, y, z = ring("x,y,z", EX) assert dict(EX(pi)*x*y*z) == dict(x*y*z*EX(pi)) == {(1, 1, 1): EX(pi)} assert (x + 2*y).mul_ground(0) == Rxyz.zero R, x, y = ring("x,y", ZZ) p = x + y**2 p1 = p.imul_num(3) assert p == p1 and p1 == 3*x + 3*y**2 p2 = p.imul_num(0) assert p == p2 and p2 == R.zero
def test_PolyElement___add__(): Rt, t = ring("t", ZZ) Ruv, u, v = ring("u,v", ZZ) Rxyz, x, y, z = ring("x,y,z", Ruv) assert dict(+x) == dict(x) assert dict(x + 3*y) == {(1, 0, 0): 1, (0, 1, 0): 3} assert dict(u + x) == dict(x + u) == {(1, 0, 0): 1, (0, 0, 0): u} assert dict(u + x*y) == dict(x*y + u) == {(1, 1, 0): 1, (0, 0, 0): u} assert dict(u + x*y + z) == dict(x*y + z + u) == {(1, 1, 0): 1, (0, 0, 1): 1, (0, 0, 0): u} assert dict(u*x + x) == dict(x + u*x) == {(1, 0, 0): u + 1} assert dict(u*x + x*y) == dict(x*y + u*x) == {(1, 1, 0): 1, (1, 0, 0): u} assert dict(u*x + x*y + z) == dict(x*y + z + u*x) == {(1, 1, 0): 1, (0, 0, 1): 1, (1, 0, 0): u} pytest.raises(TypeError, lambda: t + x) pytest.raises(TypeError, lambda: x + t) pytest.raises(TypeError, lambda: t + u) pytest.raises(TypeError, lambda: u + t) Fuv, u, v = field("u,v", ZZ) Rxyz, x, y, z = ring("x,y,z", Fuv) assert u + (x - u) == x assert dict(u + x) == dict(x + u) == {(1, 0, 0): 1, (0, 0, 0): u} Rxyz, x, y, z = ring("x,y,z", EX) assert dict(EX(pi) + x*y*z) == dict(x*y*z + EX(pi)) == {(1, 1, 1): EX(1), (0, 0, 0): EX(pi)} R, x, y = ring('x, y', ZZ) p = x**4 + 2*y m = (1, 2) p1 = p._iadd_monom((m, 5)) assert p == p1 and p1 == x**4 + 5*x*y**2 + 2*y p2 = p._iadd_monom(((0, 1), 2)) assert p == p2 and p2 == x**4 + 5*x*y**2 + 4*y p3 = p._iadd_monom(((0, 1), -4)) assert p == p3 and p3 == x**4 + 5*x*y**2
def test_Domain_get_exact(): assert EX.get_exact() == EX assert ZZ.get_exact() == ZZ assert QQ.get_exact() == QQ assert RR.get_exact() == QQ assert ALG.get_exact() == ALG assert ZZ.poly_ring(x).get_exact() == ZZ.poly_ring(x) assert QQ.poly_ring(x).get_exact() == QQ.poly_ring(x) assert ZZ.poly_ring(x, y).get_exact() == ZZ.poly_ring(x, y) assert QQ.poly_ring(x, y).get_exact() == QQ.poly_ring(x, y) assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x) assert QQ.frac_field(x).get_exact() == QQ.frac_field(x) assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y) assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)
def test_Domain_convert(): assert QQ.convert(10e-52) == QQ(1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576) R, x = ring("x", ZZ) assert ZZ.convert(x - x) == 0 assert ZZ.convert(x - x, R) == 0 F3 = FF(3) assert F3.convert(Float(2.0)) == F3.dtype(2) assert F3.convert(PythonRational(2, 1)) == F3.dtype(2) pytest.raises(CoercionFailed, lambda: F3.convert(PythonRational(1, 2))) assert F3.convert(2.0) == F3.dtype(2) pytest.raises(CoercionFailed, lambda: F3.convert(2.1)) assert RR.convert(CC(1)) == RR(1) pytest.raises(CoercionFailed, lambda: RR.convert(CC(1, 2))) assert QQ.convert(ALG.new(1), ALG) == QQ(1) pytest.raises(CoercionFailed, lambda: QQ.convert(ALG.new([1, 1]), ALG)) assert ZZ.convert(ALG.new(1), ALG) == ZZ(1) pytest.raises(CoercionFailed, lambda: ZZ.convert(ALG.new([1, 1]), ALG)) assert EX.convert(ALG.new([1, 1]), ALG) == sqrt(2) + sqrt(3) + 1 ALG2 = QQ.algebraic_field(sqrt(2)) a2 = ALG2.convert(sqrt(2)) a = ALG.convert(a2, ALG2) assert a.rep.to_dense() == [QQ(1, 2), 0, -QQ(9, 2), 0] assert ZZ_python.convert(3.0) == ZZ_python.dtype(3) pytest.raises(CoercionFailed, lambda: ZZ_python.convert(3.2)) assert CC.convert(QQ_python(1, 2)) == CC(0.5) CC01 = ComplexField(tol=0.1) assert CC.convert(CC01(0.3)) == CC(0.3) assert RR.convert(complex(2 + 0j)) == RR(2) pytest.raises(CoercionFailed, lambda: RR.convert(complex(2 + 3j))) assert ALG.convert(EX(sqrt(2)), EX) == ALG.from_expr(sqrt(2)) pytest.raises(CoercionFailed, lambda: ALG.convert(EX(sqrt(5)), EX)) pytest.raises(CoercionFailed, lambda: ALG2.convert(ALG.unit))
def test_sympyissue_11538(): assert construct_domain(E)[0] == ZZ.poly_ring(E) assert (construct_domain(x**2 + 2 * x + E) == (ZZ.poly_ring( x, E), ZZ.poly_ring(x, E)(x**2 + 2 * x + E))) assert (construct_domain(x + y + GoldenRatio) == (EX, EX(x + y + GoldenRatio)))
def test_dmp_factor_list(): R, x, y = ring("x,y", ZZ) assert R.dmp_factor_list(0) == (ZZ(0), []) assert R.dmp_factor_list(7) == (7, []) R, x, y = ring("x,y", QQ) assert R.dmp_factor_list(0) == (QQ(0), []) assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), []) Rt, t = ring("t", ZZ) R, x, y = ring("x,y", Rt) assert R.dmp_factor_list(0) == (0, []) assert R.dmp_factor_list(7) == (ZZ(7), []) Rt, t = ring("t", QQ) R, x, y = ring("x,y", Rt) assert R.dmp_factor_list(0) == (0, []) assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), []) R, x, y = ring("x,y", ZZ) assert R.dmp_factor_list_include(0) == [(0, 1)] assert R.dmp_factor_list_include(7) == [(7, 1)] R, *X = ring("x:200", ZZ) f, g = X[0]**2 + 2 * X[0] + 1, X[0] + 1 assert R.dmp_factor_list(f) == (1, [(g, 2)]) f, g = X[-1]**2 + 2 * X[-1] + 1, X[-1] + 1 assert R.dmp_factor_list(f) == (1, [(g, 2)]) R, x = ring("x", ZZ) assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)]) R, x = ring("x", QQ) assert R.dmp_factor_list(x**2 / 2 + x + QQ(1, 2)) == (QQ(1, 2), [(x + 1, 2)]) R, x, y = ring("x,y", ZZ) assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)]) R, x, y = ring("x,y", QQ) assert R.dmp_factor_list(x**2 / 2 + x + QQ(1, 2)) == (QQ(1, 2), [(x + 1, 2)]) R, x, y = ring("x,y", ZZ) f = 4 * x**2 * y + 4 * x * y**2 assert R.dmp_factor_list(f) == \ (4, [(y, 1), (x, 1), (x + y, 1)]) assert R.dmp_factor_list_include(f) == \ [(4*y, 1), (x, 1), (x + y, 1)] R, x, y = ring("x,y", QQ) f = x**2 * y / 2 + x * y**2 / 2 assert R.dmp_factor_list(f) == \ (QQ(1, 2), [(y, 1), (x, 1), (x + y, 1)]) R, x, y = ring("x,y", RR) f = 2.0 * x**2 - 8.0 * y**2 assert R.dmp_factor_list(f) == \ (RR(2.0), [(1.0*x - 2.0*y, 1), (1.0*x + 2.0*y, 1)]) f = 6.7225336055071 * x**2 * y**2 - 10.6463972754741 * x * y - 0.33469524022264 coeff, factors = R.dmp_factor_list(f) assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq( f, 1e-10) and factors[0][1] == 1 # issue diofant/diofant#238 R, x, y, z = ring("x,y,z", RR) f = x * y + x * z + 0.1 * y + 0.1 * z assert R.dmp_factor_list(f) == (10.0, [(0.1 * y + 0.1 * z, 1), (x + 0.1, 1)]) f = 0.25 * x**2 + 1.0 * x * y * z + 1.0 * y**2 * z**2 assert R.dmp_factor_list(f) == (4.0, [(0.25 * x + 0.5 * y * z, 2)]) Rt, t = ring("t", ZZ) R, x, y = ring("x,y", Rt) f = 4 * t * x**2 + 4 * t**2 * x assert R.dmp_factor_list(f) == \ (4*t, [(x, 1), (x + t, 1)]) Rt, t = ring("t", QQ) R, x, y = ring("x,y", Rt) f = t * x**2 / 2 + t**2 * x / 2 assert R.dmp_factor_list(f) == (t / 2, [(x, 1), (x + t, 1)]) R, x, y = ring("x,y", FF(2)) pytest.raises(NotImplementedError, lambda: R.dmp_factor_list(x**2 + y**2)) R, x, y = ring("x,y", EX) pytest.raises(DomainError, lambda: R.dmp_factor_list(EX(sin(1))))
def test_construct_domain(): assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([Integer(1), Integer(2), Integer(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain( [Integer(1), Integer(2), Integer(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([Rational(1, 2), Integer(2)]) == (QQ, [QQ(1, 2), QQ(2)]) assert construct_domain([3.14, 1, Rational(1, 2) ]) == (RR, [RR(3.14), RR(1.0), RR(0.5)]) assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([sqrt(2), 3.14], extension=True) == (EX, [EX(sqrt(2)), EX(3.14)]) assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))]) assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))]) assert construct_domain([x, sqrt(x), sqrt(y) ]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))]) alg = QQ.algebraic_field(sqrt(2)) assert (construct_domain( [7, Rational(1, 2), sqrt(2)], extension=True) == (alg, [alg(7), alg(Rational(1, 2)), alg(sqrt(2))])) alg = QQ.algebraic_field(sqrt(2) + sqrt(3)) assert (construct_domain([7, sqrt(2), sqrt(3)], extension=True) == (alg, [ alg(7), alg(sqrt(2)), alg(sqrt(3)) ])) dom = ZZ.poly_ring(x) assert construct_domain([2 * x, 3]) == (dom, [dom(2 * x), dom(3)]) dom = ZZ.poly_ring(x, y) assert construct_domain([2 * x, 3 * y]) == (dom, [dom(2 * x), dom(3 * y)]) dom = QQ.poly_ring(x) assert construct_domain([x / 2, 3]) == (dom, [dom(x / 2), dom(3)]) dom = QQ.poly_ring(x, y) assert construct_domain([x / 2, 3 * y]) == (dom, [dom(x / 2), dom(3 * y)]) dom = RR.poly_ring(x) assert construct_domain([x / 2, 3.5]) == (dom, [dom(x / 2), dom(3.5)]) dom = RR.poly_ring(x, y) assert construct_domain([x / 2, 3.5 * y]) == (dom, [dom(x / 2), dom(3.5 * y)]) dom = ZZ.frac_field(x) assert construct_domain([2 / x, 3]) == (dom, [dom(2 / x), dom(3)]) dom = ZZ.frac_field(x, y) assert construct_domain([2 / x, 3 * y]) == (dom, [dom(2 / x), dom(3 * y)]) dom = RR.frac_field(x) assert construct_domain([2 / x, 3.5]) == (dom, [dom(2 / x), dom(3.5)]) dom = RR.frac_field(x, y) assert construct_domain([2 / x, 3.5 * y]) == (dom, [dom(2 / x), dom(3.5 * y)]) assert construct_domain(2) == (ZZ, ZZ(2)) assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3)) assert construct_domain({}) == (ZZ, {})
def test_dmp_clear_denoms(): assert dmp_clear_denoms([[]], 1, QQ, ZZ) == (ZZ(1), [[]]) assert dmp_clear_denoms([[QQ(1)]], 1, QQ, ZZ) == (ZZ(1), [[QQ(1)]]) assert dmp_clear_denoms([[QQ(7)]], 1, QQ, ZZ) == (ZZ(1), [[QQ(7)]]) assert dmp_clear_denoms([[QQ(7, 3)]], 1, QQ) == (ZZ(3), [[QQ(7)]]) assert dmp_clear_denoms([[QQ(7, 3)]], 1, QQ, ZZ) == (ZZ(3), [[QQ(7)]]) assert dmp_clear_denoms( [[QQ(3)], [QQ(1)], []], 1, QQ, ZZ) == (ZZ(1), [[QQ(3)], [QQ(1)], []]) assert dmp_clear_denoms([[QQ( 1)], [QQ(1, 2)], []], 1, QQ, ZZ) == (ZZ(2), [[QQ(2)], [QQ(1)], []]) assert dmp_clear_denoms([QQ(3), QQ( 1), QQ(0)], 0, QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3), ZZ(1), ZZ(0)]) assert dmp_clear_denoms([QQ(1), QQ(1, 2), QQ( 0)], 0, QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2), ZZ(1), ZZ(0)]) assert dmp_clear_denoms([[QQ(3)], [QQ( 1)], []], 1, QQ, ZZ, convert=True) == (ZZ(1), [[QQ(3)], [QQ(1)], []]) assert dmp_clear_denoms([[QQ(1)], [QQ(1, 2)], []], 1, QQ, ZZ, convert=True) == (ZZ(2), [[QQ(2)], [QQ(1)], []]) assert dmp_clear_denoms( [[EX(Rational(3, 2))], [EX(Rational(9, 4))]], 1, EX) == (EX(4), [[EX(6)], [EX(9)]]) assert dmp_clear_denoms([[EX(7)]], 1, EX) == (EX(1), [[EX(7)]]) assert dmp_clear_denoms([[EX(sin(x)/x), EX(0)]], 1, EX) == (EX(x), [[EX(sin(x)), EX(0)]])
def test_dmp_factor_list(): R, x = ring("x", ZZ) assert R(0).factor_list() == (0, []) assert R(7).factor_list() == (7, []) R, x = ring("x", QQ) assert R(0).factor_list() == (0, []) assert R(QQ(1, 7)).factor_list() == (QQ(1, 7), []) R, x = ring("x", ZZ.poly_ring('t')) assert R(0).factor_list() == (0, []) assert R(7).factor_list() == (7, []) R, x = ring("x", QQ.poly_ring('t')) assert R(0).factor_list() == (0, []) assert R(QQ(1, 7)).factor_list() == (QQ(1, 7), []) R, x = ring("x", ZZ) assert (x**2 + 2 * x + 1).factor_list() == (1, [(x + 1, 2)]) # issue sympy/sympy#8037 assert (6 * x**2 - 5 * x - 6).factor_list() == (1, [(2 * x - 3, 1), (3 * x + 2, 1)]) R, x = ring("x", QQ) assert (x**2 / 2 + x + QQ(1, 2)).factor_list() == (QQ(1, 2), [(x + 1, 2)]) R, x = ring("x", FF(2)) assert (x**2 + 1).factor_list() == (1, [(x + 1, 2)]) R, x = ring("x", RR) assert (1.0 * x**2 + 2.0 * x + 1.0).factor_list() == (1.0, [(1.0 * x + 1.0, 2)]) assert (2.0 * x**2 + 4.0 * x + 2.0).factor_list() == (2.0, [(1.0 * x + 1.0, 2)]) f = 6.7225336055071 * x**2 - 10.6463972754741 * x - 0.33469524022264 coeff, factors = f.factor_list() assert coeff == 1.0 and len(factors) == 1 and factors[0][0].almosteq( f, 1e-10) and factors[0][1] == 1 # issue diofant/diofant#238 f = 0.1 * x**2 + 1.1 * x + 1.0 assert f.factor_list() == (10.0, [(0.1 * x + 0.1, 1), (0.1 * x + 1.0, 1)]) f = 0.25 + 1.0 * x + 1.0 * x**2 assert f.factor_list() == (4.0, [(0.25 + 0.5 * x, 2)]) Rt, t = ring("t", ZZ) R, x = ring("x", Rt) f = 4 * t * x**2 + 4 * t**2 * x assert f.factor_list() == (4 * t, [(x, 1), (x + t, 1)]) Rt, t = ring("t", QQ) R, x = ring("x", Rt) f = t * x**2 / 2 + t**2 * x / 2 assert f.factor_list() == (t / 2, [(x, 1), (x + t, 1)]) R, x = ring("x", QQ.algebraic_field(I)) f = x**4 + 2 * x**2 assert f.factor_list() == (1, [(x, 2), (x**2 + 2, 1)]) R, x = ring("x", EX) pytest.raises(DomainError, lambda: R(EX(sin(1))).factor_list()) R, x, y = ring("x,y", ZZ) assert R(0).factor_list() == (0, []) assert R(7).factor_list() == (7, []) R, x, y = ring("x,y", QQ) assert R(0).factor_list() == (0, []) assert R(QQ(1, 7)).factor_list() == (QQ(1, 7), []) Rt, t = ring("t", ZZ) R, x, y = ring("x,y", Rt) assert R(0).factor_list() == (0, []) assert R(7).factor_list() == (7, []) Rt, t = ring("t", QQ) R, x, y = ring("x,y", Rt) assert R(0).factor_list() == (0, []) assert R(QQ(1, 7)).factor_list() == (QQ(1, 7), []) R, *X = ring("x:200", ZZ) f, g = X[0]**2 + 2 * X[0] + 1, X[0] + 1 assert f.factor_list() == (1, [(g, 2)]) f, g = X[-1]**2 + 2 * X[-1] + 1, X[-1] + 1 assert f.factor_list() == (1, [(g, 2)]) R, x = ring("x", ZZ) assert (x**2 + 2 * x + 1).factor_list() == (1, [(x + 1, 2)]) R, x = ring("x", QQ) assert (x**2 / 2 + x + QQ(1, 2)).factor_list() == (QQ(1, 2), [(x + 1, 2)]) R, x, y = ring("x,y", ZZ) assert (x**2 + 2 * x + 1).factor_list() == (1, [(x + 1, 2)]) R, x, y = ring("x,y", QQ) assert (x**2 / 2 + x + QQ(1, 2)).factor_list() == (QQ(1, 2), [(x + 1, 2)]) R, x, y = ring("x,y", ZZ) f = 4 * x**2 * y + 4 * x * y**2 assert f.factor_list() == (4, [(y, 1), (x, 1), (x + y, 1)]) R, x, y = ring("x,y", QQ) f = x**2 * y / 2 + x * y**2 / 2 assert f.factor_list() == (QQ(1, 2), [(y, 1), (x, 1), (x + y, 1)]) R, x, y = ring("x,y", RR) f = 2.0 * x**2 - 8.0 * y**2 assert f.factor_list() == (2.0, [(1.0 * x - 2.0 * y, 1), (1.0 * x + 2.0 * y, 1)]) f = 6.7225336055071 * x**2 * y**2 - 10.6463972754741 * x * y - 0.33469524022264 coeff, factors = f.factor_list() assert coeff == 1.0 and len(factors) == 1 and factors[0][0].almosteq( f, 1e-10) and factors[0][1] == 1 # issue diofant/diofant#238 R, x, y, z = ring("x,y,z", RR) f = x * y + x * z + 0.1 * y + 0.1 * z assert f.factor_list() == (10.0, [(0.1 * y + 0.1 * z, 1), (x + 0.1, 1)]) f = 0.25 * x**2 + 1.0 * x * y * z + 1.0 * y**2 * z**2 assert f.factor_list() == (4.0, [(0.25 * x + 0.5 * y * z, 2)]) Rt, t = ring("t", ZZ) R, x, y = ring("x,y", Rt) f = 4 * t * x**2 + 4 * t**2 * x assert f.factor_list() == (4 * t, [(x, 1), (x + t, 1)]) Rt, t = ring("t", QQ) R, x, y = ring("x,y", Rt) f = t * x**2 / 2 + t**2 * x / 2 assert f.factor_list() == (t / 2, [(x, 1), (x + t, 1)]) R, x, y = ring("x,y", FF(2)) pytest.raises(NotImplementedError, lambda: (x**2 + y**2).factor_list()) R, x, y = ring("x,y", EX) pytest.raises(DomainError, lambda: R(EX(sin(1))).factor_list()) R, x, y = ring('x, y', QQ.algebraic_field(I)) f, r = x**2 + y**2, (1, [(x - I * y, 1), (x + I * y, 1)]) assert R.dmp_factor_list(f) == r with config.using(aa_factor_method='trager'): assert R.dmp_factor_list(f) == r
def test_arithmetics(): assert ZZ.rem(ZZ(2), ZZ(3)) == 2 assert ZZ.div(ZZ(2), ZZ(3)) == (0, 2) assert QQ.rem(QQ(2, 3), QQ(4, 7)) == 0 assert QQ.div(QQ(2, 3), QQ(4, 7)) == (QQ(7, 6), 0) assert QQ_python.factorial(QQ_python(7, 2)) == 6 assert CC.gcd(CC(1), CC(2)) == 1 assert CC.lcm(CC(1), CC(2)) == 2 assert EX(Rational(2, 3)).numerator == 2 assert EX(Rational(2, 3)).denominator == 3 assert abs(EX(-2)) == 2 assert -EX(2) == -2 assert 2 + EX(3) == EX(3) + 2 == 5 assert 2 - EX(3) == EX(2) - 3 == -1 assert 2 * EX(3) == EX(3) * 2 == 6 assert 2 / EX(3) == EX(2) / 3 == EX(Rational(2, 3)) assert EX(2)**2 == 4 pytest.raises(TypeError, lambda: EX(2) + object()) pytest.raises(TypeError, lambda: EX(2) - object()) pytest.raises(TypeError, lambda: EX(2) * object()) pytest.raises(TypeError, lambda: EX(2)**object()) pytest.raises(TypeError, lambda: EX(2) / object()) F11 = FF(11) assert +F11(2) == F11(2) assert F11(5) + 7 == 7 + F11(5) == F11(1) assert F11(5) - 7 == 5 - F11(7) == F11(9) assert F11(5) * 7 == 7 * F11(5) == F11(2) assert F11(5) / 9 == 5 / F11(9) == F11(3) assert F11(4) % 9 == 4 % F11(9) == F11(4) pytest.raises(TypeError, lambda: F11(2) + object()) pytest.raises(TypeError, lambda: F11(2) - object()) pytest.raises(TypeError, lambda: F11(2) * object()) pytest.raises(TypeError, lambda: F11(2)**object()) pytest.raises(TypeError, lambda: F11(2) / object()) pytest.raises(TypeError, lambda: F11(2) % object()) pytest.raises(TypeError, lambda: object() % F11(2))
def test_dup_factor_list(): R, x = ring("x", ZZ) assert R.dup_factor_list(0) == (0, []) assert R.dup_factor_list(7) == (7, []) R, x = ring("x", QQ) assert R.dup_factor_list(0) == (0, []) assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), []) R, x = ring("x", ZZ.poly_ring('t')) assert R.dup_factor_list(0) == (0, []) assert R.dup_factor_list(7) == (7, []) R, x = ring("x", QQ.poly_ring('t')) assert R.dup_factor_list(0) == (0, []) assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), []) R, x = ring("x", ZZ) assert R.dup_factor_list_include(0) == [(0, 1)] assert R.dup_factor_list_include(7) == [(7, 1)] assert R.dup_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)]) assert R.dup_factor_list_include(x**2 + 2 * x + 1) == [(x + 1, 2)] # issue sympy/sympy#8037 assert R.dup_factor_list(6 * x**2 - 5 * x - 6) == (1, [(2 * x - 3, 1), (3 * x + 2, 1)]) R, x = ring("x", QQ) assert R.dup_factor_list(x**2 / 2 + x + QQ(1, 2)) == (QQ(1, 2), [(x + 1, 2)]) R, x = ring("x", FF(2)) assert R.dup_factor_list(x**2 + 1) == (1, [(x + 1, 2)]) R, x = ring("x", RR) assert R.dup_factor_list(1.0 * x**2 + 2.0 * x + 1.0) == (1.0, [ (1.0 * x + 1.0, 2) ]) assert R.dup_factor_list(2.0 * x**2 + 4.0 * x + 2.0) == (2.0, [ (1.0 * x + 1.0, 2) ]) f = 6.7225336055071 * x**2 - 10.6463972754741 * x - 0.33469524022264 coeff, factors = R.dup_factor_list(f) assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq( f, 1e-10) and factors[0][1] == 1 # issue diofant/diofant#238 f = 0.1 * x**2 + 1.1 * x + 1.0 assert R.dup_factor_list(f) == (10.0, [(0.1 * x + 0.1, 1), (0.1 * x + 1.0, 1)]) f = 0.25 + 1.0 * x + 1.0 * x**2 assert R.dup_factor_list(f) == (4.0, [(0.25 + 0.5 * x, 2)]) Rt, t = ring("t", ZZ) R, x = ring("x", Rt) f = 4 * t * x**2 + 4 * t**2 * x assert R.dup_factor_list(f) == \ (4*t, [(x, 1), (x + t, 1)]) Rt, t = ring("t", QQ) R, x = ring("x", Rt) f = t * x**2 / 2 + t**2 * x / 2 assert R.dup_factor_list(f) == (t / 2, [(x, 1), (x + t, 1)]) R, x = ring("x", QQ.algebraic_field(I)) f = x**4 + 2 * x**2 assert R.dup_factor_list(f) == (R.domain(1), [(x, 2), (x**2 + 2, 1)]) R, x = ring("x", EX) pytest.raises(DomainError, lambda: R.dup_factor_list(EX(sin(1))))