Example #1
0
def test_encloses():
    # square with a dimpled left side
    s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1),
                Point(Rational(1, 2), Rational(1, 2)))
    # the following is True if the polygon isn't treated as closing on itself
    assert s.encloses(Point(0, Rational(1, 2))) is False
    assert s.encloses(Point(Rational(1, 2), Rational(
        1, 2))) is False  # it's a vertex
    assert s.encloses(Point(Rational(3, 4), Rational(1, 2))) is True
    l2 = Line(Point(0, 0), Point(0, 1))
    assert s.reflect(l2).encloses(Point(0, Rational(1,
                                                    2)).reflect(l2)) is False
Example #2
0
def test_polygon():
    a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
    t = Triangle(a, b, c)
    assert Polygon(a) == a
    assert Polygon(a, a) == a
    assert Polygon(a, b, b, c) == Polygon(a, b, c)
    assert Polygon(a, 1, 1, n=4) == RegularPolygon(a, 1, 4, 1)
    assert Polygon(a, Point(1, 0), b, c) == t
    assert Polygon(Point(1, 0), b, c, a) == t
    assert Polygon(b, c, a, Point(1, 0)) == t
    # 2 "remove folded" tests
    assert Polygon(a, Point(3, 0), b, c) == t
    assert Polygon(a, b, Point(3, -1), b, c) == t
    pytest.raises(GeometryError, lambda: Polygon((0, 0), (1, 0), (0, 1),
                                                 (1, 1)))
    # remove multiple collinear points
    assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
                   Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
                   Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
                   Point(15, -3), Point(15, 10), Point(15, 15)) == \
        Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15))

    p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5),
                 Point(2, 3), Point(0, 3))
    p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3),
                 Point(2, 3), Point(4, 5))
    p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4))
    p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0))
    p5 = Polygon(Point(0, 0), Point(4, 4), Point(0, 4))
    p6 = Polygon(Point(-11, 1), Point(-9, 6.6), Point(-4, -3),
                 Point(-8.4, -8.7))
    r = Ray(Point(-9, 6.6), Point(-9, 5.5))
    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1.args) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert p1.contains(Segment((0, 0), (1, 2))) is False
    assert p1.contains(Ray((0, 0), angle=pi / 3)) is False
    # ensure convex for both CW and CCW point specification
    assert p3.is_convex()
    assert p4.is_convex()
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) is None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) is False
    assert p5.encloses_point(Point(4, 0)) is False
    assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False
    assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False
    assert p5.plot_interval('x') == [x, 0, 1]
    assert p5.distance(Polygon(Point(10, 10), Point(14, 14),
                               Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(
        Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    p7 = Polygon(Point(1, 2), Point(3, 7), Point(0, 1))
    assert p5.distance(p7) == 9 * sqrt(29) / 29
    l1 = Line(Point(0, 0), Point(1, 0))
    assert p5.reflect(l1).distance(p7.reflect(l1)) == 9 * sqrt(29) / 29
    warnings.filterwarnings(
        'error', message='Polygons may intersect producing erroneous output')
    pytest.raises(
        UserWarning,
        lambda: Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
            Polygon(Point(0, 0), Point(0, 1), Point(1, 1))))
    warnings.filterwarnings(
        'ignore', message='Polygons may intersect producing erroneous output')
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point('t').subs({Symbol('t', extended_real=True): 0}) == \
        Point(0, 0)
    pytest.raises(
        ValueError, lambda: Polygon(Point(x, 0), Point(0, y), Point(x, y)).
        arbitrary_point('x'))
    assert p6.intersection(r) == [Point(-9, 33 / 5), Point(-9, -84 / 13)]
    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    pytest.raises(
        GeometryError,
        lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1)))
    pytest.raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
    pytest.raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))

    assert Polygon(Point(0, 0), 10, 5, pi,
                   n=5) == RegularPolygon(Point(0, 0), 10, 5, pi)

    assert p1 != p2
    assert p1.interior_angle == 3 * pi / 5
    assert p1.exterior_angle == 2 * pi / 5
    assert p2.apothem == 5 * cos(pi / 5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) is False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi / 3)
    assert p1.rotation == pi / 3
    assert p1.vertices[0] == Point(5, 5 * sqrt(3))
    for var in p1.args:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var in (5, 10, pi / 3)
    assert p1 != Point(0, 0)
    assert p1 != p5

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3)
    assert p1 == p1_old

    assert p1.area == (-250 * sqrt(5) + 1250) / (4 * tan(pi / 5))
    assert p1.length == 20 * sqrt(-sqrt(5) / 8 + 5 / 8)
    assert p1.scale(2, 2) == \
        RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
        Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))

    assert repr(p1) == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float('0.7853981633974483'))
    assert feq(angles[Point(4, 4)].evalf(), Float('1.2490457723982544'))
    assert feq(angles[Point(5, 2)].evalf(), Float('1.8925468811915388'))
    assert feq(angles[Point(3, 0)].evalf(), Float('2.3561944901923449'))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float('0.7853981633974483'))
    assert feq(angles[Point(4, 4)].evalf(), Float('1.2490457723982544'))
    assert feq(angles[Point(5, 2)].evalf(), Float('1.8925468811915388'))
    assert feq(angles[Point(3, 0)].evalf(), Float('2.3561944901923449'))

    assert (Polygon((0, 0), (10, 0), (2, 1), (0, 3)).angles == {
        Point(0, 0): pi / 2,
        Point(0, 3): pi / 4,
        Point(2, 1): -acos(-9 * sqrt(130) / 130) + 2 * pi,
        Point(10, 0): acos(8 * sqrt(65) / 65)
    })

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    pytest.raises(GeometryError, lambda: Triangle(Point(0, 0)))

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() is False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf() / 2)

    assert t1.is_equilateral() is False
    assert t2.is_equilateral()
    assert t3.is_equilateral() is False
    assert are_similar(t1, t2) is False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) is False
    assert t1.is_similar(Point(0, 0)) is False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    ic = (250 - 125 * sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5 * sqrt(2) / 2
    assert t2.inradius == t2.incircle.radius == 5 * sqrt(3) / 6
    assert t3.inradius == t3.incircle.radius == x1**2 / (
        (2 + sqrt(2)) * abs(x1))

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1
    t = Triangle(
        Point(Rational(100080156402737, 5000000000000),
              Rational(79782624633431, 500000000000)),
        Point(Rational(39223884078253, 2000000000000),
              Rational(156345163124289, 1000000000000)),
        Point(Rational(31241359188437, 1250000000000),
              Rational(338338270939941, 1000000000000000)))
    assert t.orthocenter == \
        Point(Rational(-78066086905059984021699779471538701955848721853,
                       80368430960602242240789074233100000000000000),
              Rational(20151573611150265741278060334545897615974257,
                       160736861921204484481578148466200000000000))

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1))
    p2 = Polygon(Point(0, Rational(5, 4)), Point(1, Rational(5, 4)),
                 Point(1, Rational(9, 4)), Point(0, Rational(9, 4)))
    p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    p4 = Polygon(Point(1, 1), Point(Rational(6, 5), 1),
                 Point(1, Rational(6, 5)))
    pt1 = Point(0.5, 0.5)
    pt2 = Point(1, 1)

    # Polygon to Point
    assert p1.distance(pt1) == Rational(1, 2)
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3, 4)
    assert p3.distance(pt2) == sqrt(2) / 2

    # Polygon to Polygon

    # p1.distance(p2) emits a warning
    # First, test the warning
    warnings.filterwarnings(
        'error', message='Polygons may intersect producing erroneous output')
    pytest.raises(UserWarning, lambda: p1.distance(p2))
    # now test the actual output
    warnings.filterwarnings(
        'ignore', message='Polygons may intersect producing erroneous output')
    assert p1.distance(p2) == Rational(1, 4)

    assert p1.distance(p3) == sqrt(2) / 2
    assert p3.distance(p4) == 2 * sqrt(2) / 5

    r = Polygon(Point(0, 0), 1, n=3)
    assert r.vertices[0] == Point(1, 0)

    mid = Point(1, 1)
    assert Polygon((0, 2), (2, 2), mid, (0, 0), (2, 0), mid).area == 0

    t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
    assert t1.is_isosceles() is True

    t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
    assert t1.is_scalene() is True
    assert t1.is_isosceles() is False

    p1 = Polygon((1, 0), (2, 0), (2, 2), (-4, 3))
    p2 = Polygon((1, 0), (2, 0), (3, 2), (-4, 3))
    assert (p1 == p2) is False