Example #1
0
def test_deltaproduct_mul_add_x_kd_add_y_kd():
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, 3)) == \
        KD(i, 1)*(KD(i, k) + x)*((KD(i, k) + x)*y)**2 + \
        KD(i, 2)*(KD(i, k) + x)*y*(KD(i, k) + x)**2*y + \
        KD(i, 3)*((KD(i, k) + x)*y)**2*(KD(i, k) + x) + \
        ((KD(i, k) + x)*y)**3
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, 1)) == \
        (x + KD(i, k))*(y + KD(i, 1))
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 2, 2)) == \
        (x + KD(i, k))*(y + KD(i, 2))
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 3, 3)) == \
        (x + KD(i, k))*(y + KD(i, 3))
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, k)) == \
        ((x + KD(i, k))*y)**k + Piecewise(
            (((x + KD(i, k))*y)**(i - 1)*(x + KD(i, k)) *
             ((x + KD(i, k))*y)**(-i + k), And(Integer(1) <= i, i <= k)),
            (0, True)
    )
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, k, 3)) == \
        ((x + KD(i, k))*y)**(4 - k) + Piecewise(
            (((x + KD(i, k))*y)**(i - k)*(x + KD(i, k)) *
             ((x + KD(i, k))*y)**(-i + 3), And(k <= i, i <= 3)),
            (0, True)
    )
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, k, l)) == \
        ((x + KD(i, k))*y)**(-k + l + 1) + Piecewise(
            (((x + KD(i, k))*y)**(i - k)*(x + KD(i, k)) *
             ((x + KD(i, k))*y)**(-i + l), And(k <= i, i <= l)),
            (0, True)
    )
Example #2
0
def test_deltaproduct_mul_add_x_y_add_y_kd():
    assert dp((x + y)*(y + KD(i, j)), (j, 1, 3)) == ((x + y)*y)**3 + \
        (x + y)*((x + y)*y)**2*KD(i, 1) + \
        (x + y)*y*(x + y)**2*y*KD(i, 2) + \
        ((x + y)*y)**2*(x + y)*KD(i, 3)
    assert dp((x + y) * (y + KD(i, j)), (j, 1, 1)) == (x + y) * (y + KD(i, 1))
    assert dp((x + y) * (y + KD(i, j)), (j, 2, 2)) == (x + y) * (y + KD(i, 2))
    assert dp((x + y) * (y + KD(i, j)), (j, 3, 3)) == (x + y) * (y + KD(i, 3))
    assert dp((x + y)*(y + KD(i, j)), (j, 1, k)) == \
        ((x + y)*y)**k + Piecewise(
            (((x + y)*y)**(i - 1)*(x + y)*((x + y)*y)**(k - i),
             And(Integer(1) <= i, i <= k)),
            (0, True)
    )
    assert dp((x + y)*(y + KD(i, j)), (j, k, 3)) == \
        ((x + y)*y)**(-k + 4) + Piecewise(
            (((x + y)*y)**(i - k)*(x + y)*((x + y)*y)**(3 - i),
             And(k <= i, i <= 3)),
            (0, True)
    )
    assert dp((x + y)*(y + KD(i, j)), (j, k, l)) == \
        ((x + y)*y)**(-k + l + 1) + Piecewise(
            (((x + y)*y)**(i - k)*(x + y)*((x + y)*y)**(l - i),
             And(k <= i, i <= l)),
            (0, True)
    )
Example #3
0
def test_deltasummation_mul_x_kd():
    assert ds(x*KD(i, j), (j, 1, 3)) == \
        Piecewise((x, And(Integer(1) <= i, i <= 3)), (0, True))
    assert ds(x * KD(i, j), (j, 1, 1)) == Piecewise((x, Eq(i, 1)), (0, True))
    assert ds(x * KD(i, j), (j, 2, 2)) == Piecewise((x, Eq(i, 2)), (0, True))
    assert ds(x * KD(i, j), (j, 3, 3)) == Piecewise((x, Eq(i, 3)), (0, True))
    assert ds(x*KD(i, j), (j, 1, k)) == \
        Piecewise((x, And(Integer(1) <= i, i <= k)), (0, True))
    assert ds(x*KD(i, j), (j, k, 3)) == \
        Piecewise((x, And(k <= i, i <= 3)), (0, True))
    assert ds(x*KD(i, j), (j, k, l)) == \
        Piecewise((x, And(k <= i, i <= l)), (0, True))
Example #4
0
def test_deltasummation_basic_symbolic():
    assert ds(KD(i, j), (j, 1, 3)) == \
        Piecewise((1, And(Integer(1) <= i, i <= 3)), (0, True))
    assert ds(KD(i, j), (j, 1, 1)) == Piecewise((1, Eq(i, 1)), (0, True))
    assert ds(KD(i, j), (j, 2, 2)) == Piecewise((1, Eq(i, 2)), (0, True))
    assert ds(KD(i, j), (j, 3, 3)) == Piecewise((1, Eq(i, 3)), (0, True))
    assert ds(KD(i, j), (j, 1, k)) == \
        Piecewise((1, And(Integer(1) <= i, i <= k)), (0, True))
    assert ds(KD(i, j), (j, k, 3)) == \
        Piecewise((1, And(k <= i, i <= 3)), (0, True))
    assert ds(KD(i, j), (j, k, l)) == \
        Piecewise((1, And(k <= i, i <= l)), (0, True))
Example #5
0
def reduce_piecewise_inequalities(exprs, gen):
    """
    Reduce a system of inequalities with nested piecewise functions.

    Examples
    ========

    >>> from diofant import Abs, Symbol
    >>> from diofant.solvers.inequalities import reduce_piecewise_inequalities

    >>> x = Symbol('x', real=True)

    >>> reduce_piecewise_inequalities([(Abs(3*x - 5) - 7, '<'),
    ...                                (Abs(x + 25) - 13, '>')], x)
    And(-2/3 < x, Or(-12 < x, x < -38), x < 4)
    >>> reduce_piecewise_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x)
    And(1/2 < x, x < 4)

    See Also
    ========

    reduce_piecewise_inequality
    """
    return And(
        *[reduce_piecewise_inequality(expr, rel, gen) for expr, rel in exprs])
Example #6
0
def test_deltasummation_mul_x_add_y_kd():
    assert ds(x*(y + KD(i, j)), (j, 1, 3)) == \
        Piecewise((3*x*y + x, And(Integer(1) <= i, i <= 3)), (3*x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 1, 1)) == \
        Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 2, 2)) == \
        Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 3, 3)) == \
        Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 1, k)) == \
        Piecewise((k*x*y + x, And(Integer(1) <= i, i <= k)), (k*x*y, True))
    assert ds(x*(y + KD(i, j)), (j, k, 3)) == \
        Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
    assert ds(x * (y + KD(i, j)), (j, k, l)) == Piecewise(
        ((l - k + 1) * x * y + x, And(k <= i, i <= l)),
        ((l - k + 1) * x * y, True))
Example #7
0
def _reduce_inequalities(inequalities, symbols):
    # helper for reduce_inequalities

    poly_part, pw_part = {}, {}
    other = []

    for inequality in inequalities:
        if inequality is S.true:
            continue
        elif inequality is S.false:
            return S.false

        expr, rel = inequality.lhs, inequality.rel_op  # rhs is 0

        # check for gens using atoms which is more strict than free_symbols to
        # guard against EX domain which won't be handled by
        # reduce_rational_inequalities
        gens = expr.atoms(Dummy, Symbol)

        if len(gens) == 1:
            gen = gens.pop()
        else:
            common = expr.free_symbols & symbols
            if len(common) == 1:
                gen = common.pop()
                other.append(
                    solve_univariate_inequality(Relational(expr, 0, rel), gen))
                continue
            else:
                raise NotImplementedError(
                    filldedent('''
                    inequality has more than one
                    symbol of interest'''))

        if expr.is_polynomial(gen):
            poly_part.setdefault(gen, []).append((expr, rel))
        else:
            components = expr.find(lambda u: u.has(gen) and (
                u.is_Function or u.is_Pow and not u.exp.is_Integer))
            if components and all(
                    isinstance(i, Abs) or isinstance(i, Piecewise)
                    for i in components):
                pw_part.setdefault(gen, []).append((expr, rel))
            else:
                other.append(
                    solve_univariate_inequality(Relational(expr, 0, rel), gen))

    poly_reduced = []
    pw_reduced = []

    for gen, exprs in poly_part.items():
        poly_reduced.append(reduce_rational_inequalities([exprs], gen))

    for gen, exprs in pw_part.items():
        pw_reduced.append(reduce_piecewise_inequalities(exprs, gen))

    return And(*(poly_reduced + pw_reduced + other))
Example #8
0
def test_global_dict():
    global_dict = {
        'Symbol': Symbol
    }
    inputs = {
        'Q & S': And(Symbol('Q'), Symbol('S'))
    }
    for text, result in inputs.items():
        assert parse_expr(text, global_dict=global_dict) == result
Example #9
0
def test_deltasummation_mul_add_x_kd_add_y_kd():
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 1, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(Integer(1) <= i, i <= 3)), (0, True)) +
        3 * (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 1, 1)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 1)), (0, True)) + (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 2, 2)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 2)), (0, True)) + (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 3, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 3)), (0, True)) + (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 1, k)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(Integer(1) <= i, i <= k)), (0, True)) +
        k * (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, k, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= 3)), (0, True)) + (4 - k) *
        (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, k, l)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= l)), (0, True)) +
        (l - k + 1) * (KD(i, k) + x) * y)
Example #10
0
def test_deltaproduct_mul_x_add_y_twokd():
    assert dp(x*(y + 2*KD(i, j)), (j, 1, 3)) == (x*y)**3 + \
        2*x*(x*y)**2*KD(i, 1) + 2*x*y*x*x*y*KD(i, 2) + 2*(x*y)**2*x*KD(i, 3)
    assert dp(x * (y + 2 * KD(i, j)), (j, 1, 1)) == x * (y + 2 * KD(i, 1))
    assert dp(x * (y + 2 * KD(i, j)), (j, 2, 2)) == x * (y + 2 * KD(i, 2))
    assert dp(x * (y + 2 * KD(i, j)), (j, 3, 3)) == x * (y + 2 * KD(i, 3))
    assert dp(x*(y + 2*KD(i, j)), (j, 1, k)) == \
        (x*y)**k + Piecewise(
            (2*(x*y)**(i - 1)*x*(x*y)**(k - i), And(Integer(1) <= i, i <= k)),
            (0, True)
    )
    assert dp(x*(y + 2*KD(i, j)), (j, k, 3)) == \
        (x*y)**(-k + 4) + Piecewise(
            (2*(x*y)**(i - k)*x*(x*y)**(3 - i), And(k <= i, i <= 3)),
            (0, True)
    )
    assert dp(x*(y + 2*KD(i, j)), (j, k, l)) == \
        (x*y)**(-k + l + 1) + Piecewise(
            (2*(x*y)**(i - k)*x*(x*y)**(l - i), And(k <= i, i <= l)),
            (0, True)
    )
Example #11
0
    def _bottom_up_scan(expr):
        exprs = []

        if expr.is_Add or expr.is_Mul:
            op = expr.func

            for arg in expr.args:
                _exprs = _bottom_up_scan(arg)

                if not exprs:
                    exprs = _exprs
                else:
                    args = []

                    for expr, conds in exprs:
                        for _expr, _conds in _exprs:
                            args.append((op(expr, _expr), conds + _conds))

                    exprs = args
        elif expr.is_Pow:
            n = expr.exp

            if not n.is_Integer:
                raise NotImplementedError("only integer powers are supported")

            _exprs = _bottom_up_scan(expr.base)

            for expr, conds in _exprs:
                exprs.append((expr**n, conds))
        elif isinstance(expr, Abs):
            _exprs = _bottom_up_scan(expr.args[0])

            for expr, conds in _exprs:
                exprs.append((expr, conds + [Ge(expr, 0)]))
                exprs.append((-expr, conds + [Lt(expr, 0)]))
        elif isinstance(expr, Piecewise):
            for a in expr.args:
                _exprs = _bottom_up_scan(a.expr)

                for ex, conds in _exprs:
                    if a.cond is not S.true:
                        exprs.append((ex, conds + [a.cond]))
                    else:
                        oconds = [
                            c[1] for c in expr.args if c[1] is not S.true
                        ]
                        exprs.append(
                            (ex, conds + [And(*[~c for c in oconds])]))
        else:
            exprs = [(expr, [])]

        return exprs
Example #12
0
def test_deltasummation_basic_numerical():
    n = symbols('n', integer=True, nonzero=True)
    assert ds(KD(n, 0), (n, 1, 3)) == 0

    # return unevaluated, until it gets implemented
    assert ds(KD(i**2, j**2), (j, -oo, oo)) == \
        Sum(KD(i**2, j**2), (j, -oo, oo))

    assert Piecewise((KD(i, k), And(Integer(1) <= i, i <= 3)), (0, True)) == \
        ds(KD(i, j)*KD(j, k), (j, 1, 3)) == \
        ds(KD(j, k)*KD(i, j), (j, 1, 3))

    assert ds(KD(i, k), (k, -oo, oo)) == 1
    assert ds(KD(i, k), (k, 0, oo)) == Piecewise((1, Integer(0) <= i),
                                                 (0, True))
    assert ds(KD(i, k), (k, 1, 3)) == \
        Piecewise((1, And(Integer(1) <= i, i <= 3)), (0, True))
    assert ds(k * KD(i, j) * KD(j, k), (k, -oo, oo)) == j * KD(i, j)
    assert ds(j * KD(i, j), (j, -oo, oo)) == i
    assert ds(i * KD(i, j), (i, -oo, oo)) == j
    assert ds(x, (i, 1, 3)) == 3 * x
    assert ds((i + j) * KD(i, j), (j, -oo, oo)) == 2 * i
Example #13
0
def test_deltasummation_mul_add_x_y_add_kd_kd():
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
        Piecewise((x + y, And(Integer(1) <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(Integer(1) <= j, j <= 3)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 1)), (0, True)) +
        Piecewise((x + y, Eq(j, 1)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 2)), (0, True)) +
        Piecewise((x + y, Eq(j, 2)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 3)), (0, True)) +
        Piecewise((x + y, Eq(j, 3)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
        Piecewise((x + y, And(Integer(1) <= i, i <= l)), (0, True)) +
        Piecewise((x + y, And(Integer(1) <= j, j <= l)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= 3)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= m)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= m)), (0, True)))