Example #1
0
def test_isprime():
    s = Sieve()
    s.extend(100000)
    assert repr(s) == '<Sieve with 9592 primes sieved: 2, 3, 5, ... 99989, 99991>'
    ps = set(s.primerange(2, 100001))
    for n in range(100001):
        # if (n in ps) != isprime(n): print n
        assert (n in ps) == isprime(n)
    assert isprime(179424673)
    # Some Mersenne primes
    assert isprime(2**61 - 1)
    assert isprime(2**89 - 1)
    assert isprime(2**607 - 1)
    assert not isprime(2**601 - 1)
    # Arnault's number
    assert isprime(int('''
803837457453639491257079614341942108138837688287558145837488917522297\
427376533365218650233616396004545791504202360320876656996676098728404\
396540823292873879185086916685732826776177102938969773947016708230428\
687109997439976544144845341155872450633409279022275296229414984230688\
1685404326457534018329786111298960644845216191652872597534901'''))
    # pseudoprime that passes the base set [2, 3, 7, 61, 24251]
    assert not isprime(9188353522314541)

    assert _mr_safe_helper(
        "if n < 170584961: return mr(n, [350, 3958281543])") == \
        ' # [350, 3958281543] stot = 1 clear [2, 3, 5, 7, 29, 67, 679067]'
    assert _mr_safe_helper(
        "if n < 3474749660383: return mr(n, [2, 3, 5, 7, 11, 13])") == \
        ' # [2, 3, 5, 7, 11, 13] stot = 7 clear == bases'
Example #2
0
def test_isprime():
    s = Sieve()
    s.extend(100000)
    assert repr(s) == '<Sieve with 9592 primes sieved: 2, 3, 5, ... 99989, 99991>'
    ps = set(s.primerange(2, 100001))
    for n in range(100001):
        # if (n in ps) != isprime(n): print n
        assert (n in ps) == isprime(n)
    assert isprime(179424673)
    # Some Mersenne primes
    assert isprime(2**61 - 1)
    assert isprime(2**89 - 1)
    assert isprime(2**607 - 1)
    assert not isprime(2**601 - 1)
    # Arnault's number
    assert isprime(int('''
803837457453639491257079614341942108138837688287558145837488917522297\
427376533365218650233616396004545791504202360320876656996676098728404\
396540823292873879185086916685732826776177102938969773947016708230428\
687109997439976544144845341155872450633409279022275296229414984230688\
1685404326457534018329786111298960644845216191652872597534901'''))
    # pseudoprime that passes the base set [2, 3, 7, 61, 24251]
    assert not isprime(9188353522314541)

    assert _mr_safe_helper(
        "if n < 170584961: return mr(n, [350, 3958281543])") == \
        ' # [350, 3958281543] stot = 1 clear [2, 3, 5, 7, 29, 67, 679067]'
    assert _mr_safe_helper(
        "if n < 3474749660383: return mr(n, [2, 3, 5, 7, 11, 13])") == \
        ' # [2, 3, 5, 7, 11, 13] stot = 7 clear == bases'
Example #3
0
def test_randprime():
    random.seed(1234)
    assert randprime(2, 3) == 2
    assert randprime(1, 3) == 2
    assert randprime(3, 5) == 3
    pytest.raises(ValueError, lambda: randprime(20, 22))
    for a in [100, 300, 500, 250000]:
        for b in [100, 300, 500, 250000]:
            p = randprime(a, a + b)
            assert a <= p < (a + b) and isprime(p)
    assert randprime(70, 7) is None
Example #4
0
def test_randprime():
    random.seed(1234)
    assert randprime(2, 3) == 2
    assert randprime(1, 3) == 2
    assert randprime(3, 5) == 3
    pytest.raises(ValueError, lambda: randprime(20, 22))
    for a in [100, 300, 500, 250000]:
        for b in [100, 300, 500, 250000]:
            p = randprime(a, a + b)
            assert a <= p < (a + b) and isprime(p)
    assert randprime(70, 7) is None
Example #5
0
def _check_cycles_alt_sym(perm):
    """
    Checks for cycles of prime length p with n/2 < p < n-2.

    Here `n` is the degree of the permutation. This is a helper function for
    the function is_alt_sym from diofant.combinatorics.perm_groups.

    Examples
    ========

    >>> from diofant.combinatorics.util import _check_cycles_alt_sym
    >>> from diofant.combinatorics.permutations import Permutation
    >>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]])
    >>> _check_cycles_alt_sym(a)
    False
    >>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]])
    >>> _check_cycles_alt_sym(b)
    True

    See Also
    ========

    diofant.combinatorics.perm_groups.PermutationGroup.is_alt_sym

    """
    n = perm.size
    af = perm.array_form
    current_len = 0
    total_len = 0
    used = set()
    for i in range(n // 2):
        if i not in used and i < n // 2 - total_len:
            current_len = 1
            used.add(i)
            j = i
            while (af[j] != i):
                current_len += 1
                j = af[j]
                used.add(j)
            total_len += current_len
            if current_len > n // 2 and current_len < n - 2 and isprime(
                    current_len):
                return True
    return False
Example #6
0
def _inv_totient_estimate(m):
    """
    Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``.

    Examples
    ========

    >>> _inv_totient_estimate(192)
    (192, 840)
    >>> _inv_totient_estimate(400)
    (400, 1750)
    """
    primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ]

    a, b = 1, 1

    for p in primes:
        a *= p
        b *= p - 1

    L = m
    U = int(math.ceil(m*(float(a)/b)))

    P = p = 2
    primes = []

    while P <= U:
        p = nextprime(p)
        primes.append(p)
        P *= p

    P //= p
    b = 1

    for p in primes[:-1]:
        b *= p - 1

    U = int(math.ceil(m*(float(P)/b)))

    return L, U
Example #7
0
from diofant.ntheory import isprime

left = right = {2, 3, 5, 7}
range10 = {"", "1", "2", "3", "4", "5", "6", "7", "8", "9"}

for _ in range(5):
    left = {
        int(f"{i}{j}")
        for i in left for j in range10 if isprime(int(f"{i}{j}"))
    }
    right = {
        int(f"{j}{i}")
        for i in right for j in range10 if isprime(int(f"{j}{i}"))
    }


def main() -> int:
    return sum(left & right - {2, 3, 5, 7})


assert main() == 748317
Example #8
0
def dup_zz_zassenhaus(f, K):
    """Factor primitive square-free polynomials in `Z[x]`. """
    n = dup_degree(f)

    if n == 1:
        return [f]

    fc = f[-1]
    A = dup_max_norm(f, K)
    b = dup_LC(f, K)
    B = int(abs(K.sqrt(K(n + 1)) * 2**n * A * b))
    C = int((n + 1)**(2 * n) * A**(2 * n - 1))
    gamma = int(_ceil(2 * _log(C, 2)))
    bound = int(2 * gamma * _log(gamma))
    a = []
    # choose a prime number `p` such that `f` be square free in Z_p
    # if there are many factors in Z_p, choose among a few different `p`
    # the one with fewer factors
    for px in range(3, bound + 1):
        if not isprime(px) or b % px == 0:
            continue

        px = K.convert(px)

        F = gf_from_int_poly(f, px)

        if not gf_sqf_p(F, px, K):
            continue
        fsqfx = gf_factor_sqf(F, px, K)[1]
        a.append((px, fsqfx))
        if len(fsqfx) < 15 or len(a) > 4:
            break
    p, fsqf = min(a, key=lambda x: len(x[1]))

    l = int(_ceil(_log(2 * B + 1, p)))

    modular = [gf_to_int_poly(ff, p) for ff in fsqf]

    g = dup_zz_hensel_lift(p, f, modular, l, K)

    sorted_T = range(len(g))
    T = set(sorted_T)
    factors, s = [], 1
    pl = p**l

    while 2 * s <= len(T):
        for S in subsets(sorted_T, s):
            # lift the constant coefficient of the product `G` of the factors
            # in the subset `S`; if it is does not divide `fc`, `G` does
            # not divide the input polynomial

            if b == 1:
                q = 1
                for i in S:
                    q = q * g[i][-1]
                q = q % pl
                if not _test_pl(fc, q, pl):
                    continue
            else:
                G = [b]
                for i in S:
                    G = dup_mul(G, g[i], K)
                G = dup_trunc(G, pl, K)
                G = dup_primitive(G, K)[1]
                q = G[-1]
                if q and fc % q != 0:
                    continue

            H = [b]
            S = set(S)
            T_S = T - S

            if b == 1:
                G = [b]
                for i in S:
                    G = dup_mul(G, g[i], K)
                G = dup_trunc(G, pl, K)

            for i in T_S:
                H = dup_mul(H, g[i], K)

            H = dup_trunc(H, pl, K)

            G_norm = dup_l1_norm(G, K)
            H_norm = dup_l1_norm(H, K)

            if G_norm * H_norm <= B:
                T = T_S
                sorted_T = [i for i in sorted_T if i not in S]

                G = dup_primitive(G, K)[1]
                f = dup_primitive(H, K)[1]

                factors.append(G)
                b = dup_LC(f, K)

                break
        else:
            s += 1

    return factors + [f]