def test_to_ZZ_ANP_poly(): A = QQ.algebraic_field(sqrt(2)) R, x = ring('x', A) f = x * (sqrt(2) + 1) T, x_, z_ = ring('x_, z_', ZZ) f_ = x_ * z_ + x_ assert _to_ZZ_poly(f, T) == f_ assert _to_ANP_poly(f_, R) == f R, x, t, s = ring('x, t, s', A) f = x * t**2 + x * s + sqrt(2) D, t_, s_ = ring('t_, s_', ZZ) T, x_, z_ = ring('x_, z_', D) f_ = (t_**2 + s_) * x_ + z_ assert _to_ZZ_poly(f, T) == f_ assert _to_ANP_poly(f_, R) == f
def test_to_ZZ_ANP_poly(): A = AlgebraicField(QQ, sqrt(2)) R, x = ring("x", A) f = x * (sqrt(2) + 1) T, x_, z_ = ring("x_, z_", ZZ) f_ = x_ * z_ + x_ assert _to_ZZ_poly(f, T) == f_ assert _to_ANP_poly(f_, R) == f R, x, t, s = ring("x, t, s", A) f = x * t**2 + x * s + sqrt(2) D, t_, s_ = ring("t_, s_", ZZ) T, x_, z_ = ring("x_, z_", D) f_ = (t_**2 + s_) * x_ + z_ assert _to_ZZ_poly(f, T) == f_ assert _to_ANP_poly(f_, R) == f
def test_to_ZZ_ANP_poly(): A = QQ.algebraic_field(sqrt(2)) R, x = ring("x", A) f = x*(sqrt(2) + 1) T, x_, z_ = ring("x_, z_", ZZ) f_ = x_*z_ + x_ assert _to_ZZ_poly(f, T) == f_ assert _to_ANP_poly(f_, R) == f R, x, t, s = ring("x, t, s", A) f = x*t**2 + x*s + sqrt(2) D, t_, s_ = ring("t_, s_", ZZ) T, x_, z_ = ring("x_, z_", D) f_ = (t_**2 + s_)*x_ + z_ assert _to_ZZ_poly(f, T) == f_ assert _to_ANP_poly(f_, R) == f