Example #1
0
def test_to_ZZ_ANP_poly():
    A = QQ.algebraic_field(sqrt(2))
    R, x = ring('x', A)
    f = x * (sqrt(2) + 1)

    T, x_, z_ = ring('x_, z_', ZZ)
    f_ = x_ * z_ + x_

    assert _to_ZZ_poly(f, T) == f_
    assert _to_ANP_poly(f_, R) == f

    R, x, t, s = ring('x, t, s', A)
    f = x * t**2 + x * s + sqrt(2)

    D, t_, s_ = ring('t_, s_', ZZ)
    T, x_, z_ = ring('x_, z_', D)
    f_ = (t_**2 + s_) * x_ + z_

    assert _to_ZZ_poly(f, T) == f_
    assert _to_ANP_poly(f_, R) == f
Example #2
0
def test_to_ZZ_ANP_poly():
    A = AlgebraicField(QQ, sqrt(2))
    R, x = ring("x", A)
    f = x * (sqrt(2) + 1)

    T, x_, z_ = ring("x_, z_", ZZ)
    f_ = x_ * z_ + x_

    assert _to_ZZ_poly(f, T) == f_
    assert _to_ANP_poly(f_, R) == f

    R, x, t, s = ring("x, t, s", A)
    f = x * t**2 + x * s + sqrt(2)

    D, t_, s_ = ring("t_, s_", ZZ)
    T, x_, z_ = ring("x_, z_", D)
    f_ = (t_**2 + s_) * x_ + z_

    assert _to_ZZ_poly(f, T) == f_
    assert _to_ANP_poly(f_, R) == f
Example #3
0
def test_to_ZZ_ANP_poly():
    A = QQ.algebraic_field(sqrt(2))
    R, x = ring("x", A)
    f = x*(sqrt(2) + 1)

    T, x_, z_ = ring("x_, z_", ZZ)
    f_ = x_*z_ + x_

    assert _to_ZZ_poly(f, T) == f_
    assert _to_ANP_poly(f_, R) == f

    R, x, t, s = ring("x, t, s", A)
    f = x*t**2 + x*s + sqrt(2)

    D, t_, s_ = ring("t_, s_", ZZ)
    T, x_, z_ = ring("x_, z_", D)
    f_ = (t_**2 + s_)*x_ + z_

    assert _to_ZZ_poly(f, T) == f_
    assert _to_ANP_poly(f_, R) == f