def test_primitive_element(): assert primitive_element([sqrt(2)]) == (PurePoly(x**2 - 2), [1], [[1, 0]]) assert (primitive_element([sqrt(2), sqrt(3)]) == (PurePoly(x**4 - 10*x**2 + 1), [1, 1], [[QQ(+1, 2), 0, -QQ(9, 2), 0], [QQ(-1, 2), 0, QQ(11, 2), 0]])) A = QQ.algebraic_field(sqrt(2)) assert (primitive_element([sqrt(2), sqrt(3)], domain=A) == (PurePoly(x**2 - 2*sqrt(2)*x - 1, x, domain=A), [1, 1], [[A.unit], [1, -A.unit]])) assert (primitive_element([sqrt(2), sqrt(2 + sqrt(2))], domain=A) == (PurePoly(x**2 - 2*sqrt(2)*x - sqrt(2), x, domain=A), [1, 1], [[A.unit], [1, -A.unit]])) A = QQ.algebraic_field(sqrt(2) + sqrt(3)) assert (primitive_element([sqrt(2), sqrt(3)], domain=A) == (PurePoly(x - sqrt(2) - sqrt(3), x, domain=A), [1, 1], [[A([QQ(1, 2), 0, -QQ(9, 2), 0])], [A([-QQ(1, 2), 0, QQ(11, 2), 0])]])) pytest.raises(ValueError, lambda: primitive_element([])) # issue sympy/sympy#13849 assert (primitive_element([sqrt(2), sqrt(2) + sqrt(5)]) == (PurePoly(x**4 - 76*x**2 + 4), [1, 2], [[QQ(1, 12), 0, QQ(-37, 6), 0], [QQ(-1, 24), 0, QQ(43, 12), 0]])) # issue sympy/sympy#14117 assert (primitive_element([I*sqrt(2*sqrt(2) + 3), I*sqrt(-2*sqrt(2) + 3), I]) == (PurePoly(x**4 + 54*x**2 + 81), [1, 2, 4], [[QQ(1, 3), 0], [QQ(1, 27), 0, 2, 0], [QQ(-1, 54), 0, QQ(-5, 6), 0]]))
def _construct_algebraic(coeffs, opt): """We know that coefficients are algebraic so construct the extension. """ from diofant.polys.numberfields import primitive_element result, exts = [], set() for coeff in coeffs: if coeff.is_Rational: coeff = (None, 0, QQ.from_diofant(coeff)) else: a = coeff.as_coeff_add()[0] coeff -= a b = coeff.as_coeff_mul()[0] coeff /= b exts.add(coeff) a = QQ.from_diofant(a) b = QQ.from_diofant(b) coeff = (coeff, b, a) result.append(coeff) exts = list(exts) g, span, H = primitive_element(exts, ex=True, polys=True) root = sum(s * ext for s, ext in zip(span, exts)) domain, g = QQ.algebraic_field((g, root)), g.rep.rep for i, (coeff, a, b) in enumerate(result): if coeff is not None: coeff = a * domain.dtype.from_list(H[exts.index(coeff)], g, QQ) + b else: coeff = domain.dtype.from_list([b], g, QQ) result[i] = coeff return domain, result
def test_primitive_element(): assert primitive_element([sqrt(2)], x) == (x**2 - 2, [1]) assert primitive_element([sqrt(2), sqrt(3)], x) == (x**4 - 10 * x**2 + 1, [1, 1]) assert primitive_element([sqrt(2)], x, polys=True) == (Poly(x**2 - 2), [1]) assert primitive_element([sqrt(2), sqrt(3)], x, polys=True) == (Poly(x**4 - 10 * x**2 + 1), [1, 1]) assert primitive_element([sqrt(2)], x, ex=True) == (x**2 - 2, [1], [[1, 0]]) assert primitive_element([sqrt(2), sqrt(3)], x, ex=True) == \ (x**4 - 10*x**2 + 1, [1, 1], [[Q(1, 2), 0, -Q(9, 2), 0], [- Q(1, 2), 0, Q(11, 2), 0]]) assert primitive_element([sqrt(2)], x, ex=True, polys=True) == (Poly(x**2 - 2), [1], [[1, 0]]) assert primitive_element([sqrt(2), sqrt(3)], x, ex=True, polys=True) == \ (Poly(x**4 - 10*x**2 + 1), [1, 1], [[Q(1, 2), 0, -Q(9, 2), 0], [-Q(1, 2), 0, Q(11, 2), 0]]) assert primitive_element([sqrt(2)], polys=True) == (Poly(x**2 - 2), [1]) pytest.raises(ValueError, lambda: primitive_element([], x, ex=False)) pytest.raises(ValueError, lambda: primitive_element([], x, ex=True))