Example #1
0
def solve_biquadratic(f, g, opt):
    """Solve a system of two bivariate quadratic polynomial equations.

    Examples
    ========

    >>> from diofant.polys import Options, Poly
    >>> from diofant.abc import x, y
    >>> from diofant.solvers.polysys import solve_biquadratic
    >>> NewOption = Options((x, y), {'domain': 'ZZ'})

    >>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
    >>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(1/3, 3), (41/27, 11/9)]

    >>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
    >>> b = Poly(-y + x - 4, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(-sqrt(29)/2 + 7/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
      sqrt(29)/2)]
    """
    G = groebner([f, g])

    if len(G) == 1 and G[0].is_ground:
        return

    if len(G) != 2:
        raise SolveFailed

    p, q = G
    x, y = opt.gens

    p = Poly(p, x, expand=False)
    q = q.ltrim(-1)

    p_roots = [ rcollect(expr, y) for expr in roots(p).keys() ]
    q_roots = list(roots(q).keys())

    solutions = []

    for q_root in q_roots:
        for p_root in p_roots:
            solution = (p_root.subs(y, q_root), q_root)
            solutions.append(solution)

    return sorted(solutions, key=default_sort_key)
Example #2
0
def test_Domain__algebraic_field():
    alg = ZZ.algebraic_field(sqrt(3))
    assert alg.minpoly == Poly(x**2 - 3)
    assert alg.domain == QQ
    assert alg.from_expr(sqrt(3)).denominator == 1
    assert alg.from_expr(2 * sqrt(3)).denominator == 1
    assert alg.from_expr(sqrt(3) / 2).denominator == 2
    assert alg([QQ(7, 38), QQ(3, 2)]).denominator == 38

    alg = QQ.algebraic_field(sqrt(2))
    assert alg.minpoly == Poly(x**2 - 2)
    assert alg.domain == QQ

    alg = QQ.algebraic_field(sqrt(2), sqrt(3))
    assert alg.minpoly == Poly(x**4 - 10 * x**2 + 1)
    assert alg.domain == QQ

    assert alg.is_nonpositive(alg([-1, 1])) is True
    assert alg.is_nonnegative(alg([2, -1])) is True

    assert alg(1).numerator == alg(1)
    assert alg.from_expr(sqrt(3) / 2).numerator == alg.from_expr(2 * sqrt(3))
    assert alg.from_expr(sqrt(3) / 2).denominator == 4

    pytest.raises(DomainError, lambda: AlgebraicField(ZZ, sqrt(2)))

    assert alg.characteristic == 0

    assert alg.is_RealAlgebraicField is True

    assert int(alg(2)) == 2
    assert int(alg.from_expr(Rational(3, 2))) == 1
    pytest.raises(TypeError, lambda: int(alg([1, 1])))

    alg = QQ.algebraic_field(I)
    assert alg.algebraic_field(I) == alg
    assert alg.is_RealAlgebraicField is False

    alg = QQ.algebraic_field(sqrt(2)).algebraic_field(sqrt(3))
    assert alg.minpoly == Poly(x**2 - 3, x, domain=QQ.algebraic_field(sqrt(2)))

    # issue sympy/sympy#14476
    assert QQ.algebraic_field(Rational(1, 7)) is QQ

    alg = QQ.algebraic_field(sqrt(2)).algebraic_field(I)
    assert alg.from_expr(2 * sqrt(2) + I / 3) == alg(
        [alg.domain(1) / 3, alg.domain(2 * sqrt(2))])
    alg2 = QQ.algebraic_field(sqrt(2))
    assert alg2.from_expr(sqrt(2)) == alg2.convert(alg.from_expr(sqrt(2)))

    eq = -x**3 + 2 * x**2 + 3 * x - 2
    rs = roots(eq, multiple=True)
    alg = QQ.algebraic_field(rs[0])
    assert alg.ext_root == RootOf(eq, 2)

    alg1 = QQ.algebraic_field(I)
    alg2 = QQ.algebraic_field(sqrt(2)).algebraic_field(I)
    assert alg1 != alg2
Example #3
0
    def _solve_reduced_system(system, gens):
        """Recursively solves reduced polynomial systems. """

        basis = groebner(system, gens, polys=True)

        if len(basis) == 1 and basis[0].is_ground:
            return

        univariate = list(filter(_is_univariate, basis))

        if len(univariate) == 1:
            f = univariate.pop()
        else:
            raise NotImplementedError("only zero-dimensional systems "
                                      "supported (finite number of solutions)")

        gens = f.gens
        gen = gens[-1]

        zeros = list(roots(f.ltrim(gen)).keys())

        if len(basis) == 1:
            return [ (zero,) for zero in zeros ]

        solutions = []

        for zero in zeros:
            new_system = []
            new_gens = gens[:-1]

            for b in basis[:-1]:
                eq = _subs_root(b, gen, zero)

                if eq is not S.Zero:
                    new_system.append(eq)

            for solution in _solve_reduced_system(new_system, new_gens):
                solutions.append(solution + (zero,))

        return solutions
Example #4
0
    def _eval_product(self, term, limits):
        from diofant.concrete.delta import deltaproduct, _has_simple_delta
        from diofant.concrete.summations import summation
        from diofant.functions import KroneckerDelta, RisingFactorial

        (k, a, n) = limits

        if k not in term.free_symbols:
            if (term - 1).is_zero:
                return S.One
            return term**(n - a + 1)

        if a == n:
            return term.subs(k, a)

        if term.has(KroneckerDelta) and _has_simple_delta(term, limits[0]):
            return deltaproduct(term, limits)

        dif = n - a
        if dif.is_Integer:
            return Mul(*[term.subs(k, a + i) for i in range(dif + 1)])

        elif term.is_polynomial(k):
            poly = term.as_poly(k)

            A = B = Q = S.One

            all_roots = roots(poly)

            M = 0
            for r, m in all_roots.items():
                M += m
                A *= RisingFactorial(a - r, n - a + 1)**m
                Q *= (n - r)**m

            if M < poly.degree():
                arg = quo(poly, Q.as_poly(k))
                B = self.func(arg, (k, a, n)).doit()

            return poly.LC()**(n - a + 1) * A * B

        elif term.is_Add:
            p, q = term.as_numer_denom()

            p = self._eval_product(p, (k, a, n))
            q = self._eval_product(q, (k, a, n))

            return p / q

        elif term.is_Mul:
            exclude, include = [], []

            for t in term.args:
                p = self._eval_product(t, (k, a, n))

                if p is not None:
                    exclude.append(p)
                else:
                    include.append(t)

            if not exclude:
                return
            else:
                arg = term._new_rawargs(*include)
                A = Mul(*exclude)
                B = self.func(arg, (k, a, n)).doit()
                return A * B

        elif term.is_Pow:
            if not term.base.has(k):
                s = summation(term.exp, (k, a, n))

                return term.base**s
            elif not term.exp.has(k):
                p = self._eval_product(term.base, (k, a, n))

                if p is not None:
                    return p**term.exp

        elif isinstance(term, Product):
            evaluated = term.doit()
            f = self._eval_product(evaluated, limits)
            if f is None:
                return self.func(evaluated, limits)
            else:
                return f
Example #5
0
def test_Domain__algebraic_field():
    alg = ZZ.algebraic_field(sqrt(3))
    assert alg.minpoly == Poly(x**2 - 3)
    assert alg.domain == QQ
    assert alg.from_expr(sqrt(3)).denominator == 1
    assert alg.from_expr(2 * sqrt(3)).denominator == 1
    assert alg.from_expr(sqrt(3) / 2).denominator == 2
    assert alg([QQ(7, 38), QQ(3, 2)]).denominator == 38

    alg = QQ.algebraic_field(sqrt(2))
    assert alg.minpoly == Poly(x**2 - 2)
    assert alg.domain == QQ

    alg = QQ.algebraic_field(sqrt(2), sqrt(3))
    assert alg.minpoly == Poly(x**4 - 10 * x**2 + 1)
    assert alg.domain == QQ

    assert alg(1).numerator == alg(1)
    assert alg.from_expr(sqrt(3) / 2).numerator == alg.from_expr(2 * sqrt(3))
    assert alg.from_expr(sqrt(3) / 2).denominator == 4

    pytest.raises(DomainError, lambda: AlgebraicField(ZZ, sqrt(2)))

    assert alg.characteristic == 0

    assert alg.is_RealAlgebraicField is True

    assert int(alg(2)) == 2
    assert int(alg.from_expr(Rational(3, 2))) == 1

    alg = QQ.algebraic_field(I)
    assert alg.algebraic_field(I) == alg
    assert alg.is_RealAlgebraicField is False
    pytest.raises(TypeError, lambda: int(alg([1, 1])))

    alg = QQ.algebraic_field(sqrt(2)).algebraic_field(sqrt(3))
    assert alg.minpoly == Poly(x**2 - 3, x, domain=QQ.algebraic_field(sqrt(2)))

    # issue sympy/sympy#14476
    assert QQ.algebraic_field(Rational(1, 7)) is QQ

    alg = QQ.algebraic_field(sqrt(2)).algebraic_field(I)
    assert alg.from_expr(2 * sqrt(2) + I / 3) == alg(
        [alg.domain([1]) / 3, alg.domain([2, 0])])
    alg2 = QQ.algebraic_field(sqrt(2))
    assert alg2.from_expr(sqrt(2)) == alg2.convert(alg.from_expr(sqrt(2)))

    eq = -x**3 + 2 * x**2 + 3 * x - 2
    rs = roots(eq, multiple=True)
    alg = QQ.algebraic_field(rs[0])
    assert alg.is_RealAlgebraicField

    alg1 = QQ.algebraic_field(I)
    alg2 = QQ.algebraic_field(sqrt(2)).algebraic_field(I)
    assert alg1 != alg2

    alg3 = QQ.algebraic_field(RootOf(4 * x**7 + x - 1, 0))
    assert alg3.is_RealAlgebraicField
    assert int(alg3.unit) == 2
    assert 2.772 > alg3.unit > 2.771
    assert int(alg3([3, 17, 11, -1, 2])) == 622
    assert int(
        alg3([
            1,
            QQ(-11, 4),
            QQ(125326976730518, 44208605852241),
            QQ(-16742151878022, 12894796053515),
            QQ(2331359268715, 10459004949272)
        ])) == 18

    alg4 = QQ.algebraic_field(sqrt(2) + I)
    assert alg4.convert(alg2.unit) == alg4.from_expr(I)
Example #6
0
def test_Domain__algebraic_field():
    alg = ZZ.algebraic_field(sqrt(3))
    assert alg.minpoly == Poly(x**2 - 3)
    assert alg.domain == QQ
    assert alg.from_expr(sqrt(3)).denominator == 1
    assert alg.from_expr(2*sqrt(3)).denominator == 1
    assert alg.from_expr(sqrt(3)/2).denominator == 2
    assert alg([QQ(7, 38), QQ(3, 2)]).denominator == 38

    alg = QQ.algebraic_field(sqrt(2))
    assert alg.minpoly == Poly(x**2 - 2)
    assert alg.domain == QQ

    alg = QQ.algebraic_field(sqrt(2), sqrt(3))
    assert alg.minpoly == Poly(x**4 - 10*x**2 + 1)
    assert alg.domain == QQ

    assert alg.is_nonpositive(alg([-1, 1])) is True
    assert alg.is_nonnegative(alg([2, -1])) is True

    assert alg(1).numerator == alg(1)
    assert alg.from_expr(sqrt(3)/2).numerator == alg.from_expr(2*sqrt(3))
    assert alg.from_expr(sqrt(3)/2).denominator == 4

    pytest.raises(DomainError, lambda: AlgebraicField(ZZ, sqrt(2)))

    assert alg.characteristic == 0

    assert alg.is_RealAlgebraicField is True

    assert int(alg(2)) == 2
    assert int(alg.from_expr(Rational(3, 2))) == 1
    pytest.raises(TypeError, lambda: int(alg([1, 1])))

    alg = QQ.algebraic_field(I)
    assert alg.algebraic_field(I) == alg
    assert alg.is_RealAlgebraicField is False

    alg = QQ.algebraic_field(sqrt(2)).algebraic_field(sqrt(3))
    assert alg.minpoly == Poly(x**2 - 3, x, domain=QQ.algebraic_field(sqrt(2)))

    # issue sympy/sympy#14476
    assert QQ.algebraic_field(Rational(1, 7)) is QQ

    alg = QQ.algebraic_field(sqrt(2)).algebraic_field(I)
    assert alg.from_expr(2*sqrt(2) + I/3) == alg([alg.domain(1)/3,
                                                  alg.domain(2*sqrt(2))])
    alg2 = QQ.algebraic_field(sqrt(2))
    assert alg2.from_expr(sqrt(2)) == alg2.convert(alg.from_expr(sqrt(2)))

    eq = -x**3 + 2*x**2 + 3*x - 2
    rs = roots(eq, multiple=True)
    alg = QQ.algebraic_field(rs[0])
    assert alg.is_RealAlgebraicField

    alg1 = QQ.algebraic_field(I)
    alg2 = QQ.algebraic_field(sqrt(2)).algebraic_field(I)
    assert alg1 != alg2

    alg3 = QQ.algebraic_field(RootOf(4*x**7 + x - 1, 0))
    assert alg3.is_RealAlgebraicField
    assert 2.772 > alg3.unit > 2.771

    alg4 = QQ.algebraic_field(sqrt(2) + I)
    assert alg4.convert(alg2.unit) == alg4.from_expr(I)
Example #7
0
def rsolve_poly(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order
    `k` with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f`, where `f` is a polynomial, we seek for
    all polynomial solutions over field `K` of characteristic zero.

    The algorithm performs two basic steps:

        (1) Compute degree `N` of the general polynomial solution.
        (2) Find all polynomials of degree `N` or less
            of `\operatorname{L} y = f`.

    There are two methods for computing the polynomial solutions.
    If the degree bound is relatively small, i.e. it's smaller than
    or equal to the order of the recurrence, then naive method of
    undetermined coefficients is being used. This gives system
    of algebraic equations with `N+1` unknowns.

    In the other case, the algorithm performs transformation of the
    initial equation to an equivalent one, for which the system of
    algebraic equations has only `r` indeterminates. This method is
    quite sophisticated (in comparison with the naive one) and was
    invented together by Abramov, Bronstein and Petkovšek.

    It is possible to generalize the algorithm implemented here to
    the case of linear q-difference and differential equations.

    Lets say that we would like to compute `m`-th Bernoulli polynomial
    up to a constant. For this we can use `b(n+1) - b(n) = m n^{m-1}`
    recurrence, which has solution `b(n) = B_m + C`. For example:

    >>> from diofant import Symbol, rsolve_poly
    >>> n = Symbol('n', integer=True)

    >>> rsolve_poly([-1, 1], 4*n**3, n)
    C0 + n**4 - 2*n**3 + n**2

    References
    ==========

    .. [1] S. A. Abramov, M. Bronstein and M. Petkovšek, On polynomial
           solutions of linear operator equations, in: T. Levelt, ed.,
           Proc. ISSAC '95, ACM Press, New York, 1995, 290-296.

    .. [2] M. Petkovšek, Hypergeometric solutions of linear recurrences
           with polynomial coefficients, J. Symbolic Computation,
           14 (1992), 243-264.

    .. [3] M. Petkovšek, H. S. Wilf, D. Zeilberger, A = B, 1996.

    """
    f = sympify(f)

    if not f.is_polynomial(n):
        return

    homogeneous = f.is_zero

    r = len(coeffs) - 1

    coeffs = [Poly(coeff, n) for coeff in coeffs]

    g = gcd_list(coeffs + [f], n, polys=True)
    if not g.is_ground:
        coeffs = [quo(c, g, n, polys=False) for c in coeffs]
        f = quo(f, g, n, polys=False)

    polys = [Poly(0, n)] * (r + 1)
    terms = [(S.Zero, S.NegativeInfinity)] * (r + 1)

    for i in range(0, r + 1):
        for j in range(i, r + 1):
            polys[i] += coeffs[j] * binomial(j, i)

        if not polys[i].is_zero:
            (exp, ), coeff = polys[i].LT()
            terms[i] = (coeff, exp)

    d = b = terms[0][1]

    for i in range(1, r + 1):
        if terms[i][1] > d:
            d = terms[i][1]

        if terms[i][1] - i > b:
            b = terms[i][1] - i

    d, b = int(d), int(b)

    x = Dummy('x')

    degree_poly = S.Zero

    for i in range(0, r + 1):
        if terms[i][1] - i == b:
            degree_poly += terms[i][0] * FallingFactorial(x, i)

    nni_roots = list(
        roots(degree_poly, x, filter='Z', predicate=lambda r: r >= 0).keys())

    if nni_roots:
        N = [max(nni_roots)]
    else:
        N = []

    if homogeneous:
        N += [-b - 1]
    else:
        N += [f.as_poly(n).degree() - b, -b - 1]

    N = int(max(N))

    if N < 0:
        if homogeneous:
            if hints.get('symbols', False):
                return S.Zero, []
            else:
                return S.Zero
        else:
            return

    if N <= r:
        C = []
        y = E = S.Zero

        for i in range(0, N + 1):
            C.append(Symbol('C' + str(i)))
            y += C[i] * n**i

        for i in range(0, r + 1):
            E += coeffs[i].as_expr() * y.subs(n, n + i)

        solutions = solve_undetermined_coeffs(E - f, C, n)

        if solutions is not None:
            C = [c for c in C if (c not in solutions)]
            result = y.subs(solutions)
        else:
            return  # TBD
    else:
        A = r
        U = N + A + b + 1

        nni_roots = list(
            roots(polys[r], filter='Z', predicate=lambda r: r >= 0).keys())

        if nni_roots != []:
            a = max(nni_roots) + 1
        else:
            a = S.Zero

        def _zero_vector(k):
            return [S.Zero] * k

        def _one_vector(k):
            return [S.One] * k

        def _delta(p, k):
            B = S.One
            D = p.subs(n, a + k)

            for i in range(1, k + 1):
                B *= -Rational(k - i + 1, i)
                D += B * p.subs(n, a + k - i)

            return D

        alpha = {}

        for i in range(-A, d + 1):
            I = _one_vector(d + 1)

            for k in range(1, d + 1):
                I[k] = I[k - 1] * (x + i - k + 1) / k

            alpha[i] = S.Zero

            for j in range(0, A + 1):
                for k in range(0, d + 1):
                    B = binomial(k, i + j)
                    D = _delta(polys[j].as_expr(), k)

                    alpha[i] += I[k] * B * D

        V = Matrix(U, A, lambda i, j: int(i == j))

        if homogeneous:
            for i in range(A, U):
                v = _zero_vector(A)

                for k in range(1, A + b + 1):
                    if i - k < 0:
                        break

                    B = alpha[k - A].subs(x, i - k)

                    for j in range(0, A):
                        v[j] += B * V[i - k, j]

                denom = alpha[-A].subs(x, i)

                for j in range(0, A):
                    V[i, j] = -v[j] / denom
        else:
            G = _zero_vector(U)

            for i in range(A, U):
                v = _zero_vector(A)
                g = S.Zero

                for k in range(1, A + b + 1):
                    if i - k < 0:
                        break

                    B = alpha[k - A].subs(x, i - k)

                    for j in range(0, A):
                        v[j] += B * V[i - k, j]

                    g += B * G[i - k]

                denom = alpha[-A].subs(x, i)

                for j in range(0, A):
                    V[i, j] = -v[j] / denom

                G[i] = (_delta(f, i - A) - g) / denom

        P, Q = _one_vector(U), _zero_vector(A)

        for i in range(1, U):
            P[i] = (P[i - 1] * (n - a - i + 1) / i).expand()

        for i in range(0, A):
            Q[i] = Add(*[(v * p).expand() for v, p in zip(V[:, i], P)])

        if not homogeneous:
            h = Add(*[(g * p).expand() for g, p in zip(G, P)])

        C = [Symbol('C' + str(i)) for i in range(0, A)]

        def g(i):
            return Add(*[c * _delta(q, i) for c, q in zip(C, Q)])

        if homogeneous:
            E = [g(i) for i in range(N + 1, U)]
        else:
            E = [g(i) + _delta(h, i) for i in range(N + 1, U)]

        if E != []:
            solutions = solve(E, *C)

            if not solutions:
                if homogeneous:
                    if hints.get('symbols', False):
                        return S.Zero, []
                    else:
                        return S.Zero
                else:
                    return
        else:
            solutions = {}

        if homogeneous:
            result = S.Zero
        else:
            result = h

        for c, q in list(zip(C, Q)):
            if c in solutions:
                s = solutions[c] * q
                C.remove(c)
            else:
                s = c * q

            result += s.expand()

    if hints.get('symbols', False):
        return result, C
    else:
        return result
Example #8
0
def rsolve_hyper(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order `k`
    with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f` we seek for all hypergeometric solutions
    over field `K` of characteristic zero.

    The inhomogeneous part can be either hypergeometric or a sum
    of a fixed number of pairwise dissimilar hypergeometric terms.

    The algorithm performs three basic steps:

        (1) Group together similar hypergeometric terms in the
            inhomogeneous part of `\operatorname{L} y = f`, and find
            particular solution using Abramov's algorithm.

        (2) Compute generating set of `\operatorname{L}` and find basis
            in it, so that all solutions are linearly independent.

        (3) Form final solution with the number of arbitrary
            constants equal to dimension of basis of `\operatorname{L}`.

    Term `a(n)` is hypergeometric if it is annihilated by first order
    linear difference equations with polynomial coefficients or, in
    simpler words, if consecutive term ratio is a rational function.

    The output of this procedure is a linear combination of fixed
    number of hypergeometric terms. However the underlying method
    can generate larger class of solutions - D'Alembertian terms.

    Note also that this method not only computes the kernel of the
    inhomogeneous equation, but also reduces in to a basis so that
    solutions generated by this procedure are linearly independent

    Examples
    ========

    >>> from diofant.solvers import rsolve_hyper
    >>> from diofant.abc import x

    >>> rsolve_hyper([-1, -1, 1], 0, x)
    C0*(1/2 + sqrt(5)/2)**x + C1*(-sqrt(5)/2 + 1/2)**x

    >>> rsolve_hyper([-1, 1], 1 + x, x)
    C0 + x*(x + 1)/2

    References
    ==========

    .. [1] M. Petkovšek, Hypergeometric solutions of linear recurrences
           with polynomial coefficients, J. Symbolic Computation,
           14 (1992), 243-264.

    .. [2] M. Petkovšek, H. S. Wilf, D. Zeilberger, A = B, 1996.
    """
    coeffs = list(map(sympify, coeffs))

    f = sympify(f)

    r, kernel, symbols = len(coeffs) - 1, [], set()

    if not f.is_zero:
        if f.is_Add:
            similar = {}

            for g in f.expand().args:
                if not g.is_hypergeometric(n):
                    return

                for h in similar.keys():
                    if hypersimilar(g, h, n):
                        similar[h] += g
                        break
                else:
                    similar[g] = S.Zero

            inhomogeneous = []

            for g, h in similar.items():
                inhomogeneous.append(g + h)
        elif f.is_hypergeometric(n):
            inhomogeneous = [f]
        else:
            return

        for i, g in enumerate(inhomogeneous):
            coeff, polys = S.One, coeffs[:]
            denoms = [S.One] * (r + 1)

            s = hypersimp(g, n)

            for j in range(1, r + 1):
                coeff *= s.subs(n, n + j - 1)

                p, q = coeff.as_numer_denom()

                polys[j] *= p
                denoms[j] = q

            for j in range(0, r + 1):
                polys[j] *= Mul(*(denoms[:j] + denoms[j + 1:]))

            R = rsolve_ratio(polys, Mul(*denoms), n, symbols=True)
            if R is not None:
                R, syms = R
                if syms:
                    R = R.subs(zip(syms, [0] * len(syms)))

            if R:
                inhomogeneous[i] *= R
            else:
                return

            result = Add(*inhomogeneous)
            result = simplify(result)
    else:
        result = S.Zero

    Z = Dummy('Z')

    p, q = coeffs[0], coeffs[r].subs(n, n - r + 1)

    p_factors = [z for z in roots(p, n).keys()]
    q_factors = [z for z in roots(q, n).keys()]

    factors = [(S.One, S.One)]

    for p in p_factors:
        for q in q_factors:
            if p.is_integer and q.is_integer and p <= q:
                continue
            else:
                factors += [(n - p, n - q)]

    p = [(n - p, S.One) for p in p_factors]
    q = [(S.One, n - q) for q in q_factors]

    factors = p + factors + q

    for A, B in factors:
        polys, degrees = [], []
        D = A * B.subs(n, n + r - 1)

        for i in range(0, r + 1):
            a = Mul(*[A.subs(n, n + j) for j in range(0, i)])
            b = Mul(*[B.subs(n, n + j) for j in range(i, r)])

            poly = quo(coeffs[i] * a * b, D, n)
            polys.append(poly.as_poly(n))

            if not poly.is_zero:
                degrees.append(polys[i].degree())

        d, poly = max(degrees), S.Zero

        for i in range(0, r + 1):
            coeff = polys[i].nth(d)

            if coeff is not S.Zero:
                poly += coeff * Z**i

        for z in roots(poly, Z).keys():
            if z.is_zero:
                continue

            (C, s) = rsolve_poly([polys[i] * z**i for i in range(r + 1)],
                                 0,
                                 n,
                                 symbols=True)

            if C is not None and C is not S.Zero:
                symbols |= set(s)

                ratio = z * A * C.subs(n, n + 1) / B / C
                ratio = simplify(ratio)

                skip = max([-1] + [
                    v for v in roots(Mul(*ratio.as_numer_denom()), n).keys()
                    if v.is_Integer
                ]) + 1
                K = product(ratio, (n, skip, n - 1))

                if K.has(factorial, FallingFactorial, RisingFactorial):
                    K = simplify(K)

                if casoratian(kernel + [K], n, zero=False) != 0:
                    kernel.append(K)

    kernel.sort(key=default_sort_key)
    sk = list(zip(numbered_symbols('C'), kernel))

    for C, ker in sk:
        result += C * ker

    if hints.get('symbols', False):
        symbols |= {s for s, k in sk}
        return result, list(symbols)
    else:
        return result
Example #9
0
def rsolve_ratio(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order `k`
    with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f`, where `f` is a polynomial, we seek
    for all rational solutions over field `K` of characteristic zero.

    This procedure accepts only polynomials, however if you are
    interested in solving recurrence with rational coefficients
    then use ``rsolve`` which will pre-process the given equation
    and run this procedure with polynomial arguments.

    The algorithm performs two basic steps:

        (1) Compute polynomial `v(n)` which can be used as universal
            denominator of any rational solution of equation
            `\operatorname{L} y = f`.

        (2) Construct new linear difference equation by substitution
            `y(n) = u(n)/v(n)` and solve it for `u(n)` finding all its
            polynomial solutions. Return ``None`` if none were found.

    Algorithm implemented here is a revised version of the original
    Abramov's algorithm, developed in 1989. The new approach is much
    simpler to implement and has better overall efficiency. This
    method can be easily adapted to q-difference equations case.

    Besides finding rational solutions alone, this functions is
    an important part of Hyper algorithm were it is used to find
    particular solution of inhomogeneous part of a recurrence.

    Examples
    ========

    >>> from diofant.abc import x
    >>> from diofant.solvers.recurr import rsolve_ratio
    >>> rsolve_ratio([-2*x**3 + x**2 + 2*x - 1, 2*x**3 + x**2 - 6*x,
    ... - 2*x**3 - 11*x**2 - 18*x - 9, 2*x**3 + 13*x**2 + 22*x + 8], 0, x)
    C2*(2*x - 3)/(2*(x**2 - 1))

    References
    ==========

    .. [1] S. A. Abramov, Rational solutions of linear difference
           and q-difference equations with polynomial coefficients,
           in: T. Levelt, ed., Proc. ISSAC '95, ACM Press, New York,
           1995, 285-289

    See Also
    ========

    rsolve_hyper
    """
    f = sympify(f)

    if not f.is_polynomial(n):
        return

    coeffs = list(map(sympify, coeffs))

    r = len(coeffs) - 1

    A, B = coeffs[r], coeffs[0]
    A = A.subs(n, n - r).expand()

    h = Dummy('h')

    res = resultant(A, B.subs(n, n + h), n)

    if not res.is_polynomial(h):
        p, q = res.as_numer_denom()
        res = quo(p, q, h)

    nni_roots = list(
        roots(res, h, filter='Z', predicate=lambda r: r >= 0).keys())

    if not nni_roots:
        return rsolve_poly(coeffs, f, n, **hints)
    else:
        C, numers = S.One, [S.Zero] * (r + 1)

        for i in range(int(max(nni_roots)), -1, -1):
            d = gcd(A, B.subs(n, n + i), n)

            A = quo(A, d, n)
            B = quo(B, d.subs(n, n - i), n)

            C *= Mul(*[d.subs(n, n - j) for j in range(0, i + 1)])

        denoms = [C.subs(n, n + i) for i in range(0, r + 1)]

        for i in range(0, r + 1):
            g = gcd(coeffs[i], denoms[i], n)

            numers[i] = quo(coeffs[i], g, n)
            denoms[i] = quo(denoms[i], g, n)

        for i in range(0, r + 1):
            numers[i] *= Mul(*(denoms[:i] + denoms[i + 1:]))

        result = rsolve_poly(numers, f * Mul(*denoms), n, **hints)

        if result is not None:
            if hints.get('symbols', False):
                return simplify(result[0] / C), result[1]
            else:
                return simplify(result / C)
        else:
            return