def test_si():
    assert Si(I * x) == I * Shi(x)
    assert Shi(I * x) == I * Si(x)
    assert Si(-I * x) == -I * Shi(x)
    assert Shi(-I * x) == -I * Si(x)
    assert Si(-x) == -Si(x)
    assert Shi(-x) == -Shi(x)
    assert Si(exp_polar(2 * pi * I) * x) == Si(x)
    assert Si(exp_polar(-2 * pi * I) * x) == Si(x)
    assert Shi(exp_polar(2 * pi * I) * x) == Shi(x)
    assert Shi(exp_polar(-2 * pi * I) * x) == Shi(x)

    assert Si(oo) == pi / 2
    assert Si(-oo) == -pi / 2
    assert Shi(oo) == oo
    assert Shi(-oo) == -oo

    assert mytd(Si(x), sin(x) / x, x)
    assert mytd(Shi(x), sinh(x) / x, x)

    assert mytn(
        Si(x),
        Si(x).rewrite(Ei),
        -I * (-Ei(x * exp_polar(-I * pi / 2)) / 2 +
              Ei(x * exp_polar(I * pi / 2)) / 2 - I * pi) + pi / 2, x)
    assert mytn(
        Si(x),
        Si(x).rewrite(expint),
        -I * (-expint(1, x * exp_polar(-I * pi / 2)) / 2 +
              expint(1, x * exp_polar(I * pi / 2)) / 2) + pi / 2, x)
    assert mytn(Shi(x),
                Shi(x).rewrite(Ei),
                Ei(x) / 2 - Ei(x * exp_polar(I * pi)) / 2 + I * pi / 2, x)
    assert mytn(
        Shi(x),
        Shi(x).rewrite(expint),
        expint(1, x) / 2 - expint(1, x * exp_polar(I * pi)) / 2 - I * pi / 2,
        x)

    assert tn_arg(Si)
    assert tn_arg(Shi)

    assert Si(x).nseries(x, n=8) == \
        x - x**3/18 + x**5/600 - x**7/35280 + O(x**9)
    assert Shi(x).nseries(x, n=8) == \
        x + x**3/18 + x**5/600 + x**7/35280 + O(x**9)
    assert Si(sin(x)).nseries(
        x, n=5) == x - 2 * x**3 / 9 + 17 * x**5 / 450 + O(x**7)
    assert Si(x).series(x, 1, n=3) == \
        Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1))

    pytest.raises(ArgumentIndexError, lambda: Si(z).fdiff(2))
Example #2
0
def test_li():
    z = Symbol("z")
    zr = Symbol("z", extended_real=True)
    zp = Symbol("z", positive=True)
    zn = Symbol("z", negative=True)

    assert li(0) == 0
    assert li(1) == -oo
    assert li(oo) == oo

    assert isinstance(li(z), li)

    assert diff(li(z), z) == 1/log(z)

    assert conjugate(li(z)) == li(conjugate(z))
    assert conjugate(li(-zr)) == li(-zr)
    assert conjugate(li(-zp)) == conjugate(li(-zp))
    assert conjugate(li(zn)) == conjugate(li(zn))

    assert li(z).rewrite(Li) == Li(z) + li(2)
    assert li(z).rewrite(Ei) == Ei(log(z))
    assert li(z).rewrite(uppergamma) == (-log(1/log(z))/2 - log(-log(z)) +
                                         log(log(z))/2 - expint(1, -log(z)))
    assert li(z).rewrite(Si) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Ci) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Shi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(Chi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(hyper) == (log(z)*hyper((1, 1), (2, 2), log(z)) -
                                   log(1/log(z))/2 + log(log(z))/2 + EulerGamma)
    assert li(z).rewrite(meijerg) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 -
                                      meijerg(((), (1,)), ((0, 0), ()), -log(z)))
def test_erfc():
    assert erfc(nan) == nan

    assert erfc(oo) == 0
    assert erfc(-oo) == 2

    assert erfc(0) == 1

    assert erfc(I * oo) == -oo * I
    assert erfc(-I * oo) == oo * I

    assert erfc(-x) == Integer(2) - erfc(x)
    assert erfc(erfcinv(x)) == x
    assert erfc(erfinv(x)) == 1 - x

    assert erfc(I).is_extended_real is False
    assert erfc(w).is_extended_real is True
    assert erfc(z).is_extended_real is None

    assert conjugate(erfc(z)) == erfc(conjugate(z))

    assert erfc(x).as_leading_term(x) == 1
    assert erfc(1 / x).as_leading_term(x) == erfc(1 / x)

    assert erfc(z).rewrite('erf') == 1 - erf(z)
    assert erfc(z).rewrite('erfi') == 1 + I * erfi(I * z)
    assert erfc(z).rewrite('fresnels') == 1 - (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erfc(z).rewrite('fresnelc') == 1 - (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erfc(z).rewrite('hyper') == 1 - 2 * z * hyper(
        [Rational(1, 2)], [Rational(3, 2)], -z**2) / sqrt(pi)
    assert erfc(z).rewrite('meijerg') == 1 - z * meijerg(
        [Rational(1, 2)], [], [0], [Rational(-1, 2)], z**2) / sqrt(pi)
    assert erfc(z).rewrite(
        'uppergamma') == 1 - sqrt(z**2) * erf(sqrt(z**2)) / z
    assert erfc(z).rewrite('expint') == 1 - sqrt(z**2) / z + z * expint(
        Rational(1, 2), z**2) / sqrt(pi)

    assert erfc(x).as_real_imag() == \
        ((erfc(re(x) - I*re(x)*abs(im(x))/abs(re(x)))/2 +
          erfc(re(x) + I*re(x)*abs(im(x))/abs(re(x)))/2,
          I*(erfc(re(x) - I*re(x)*abs(im(x))/abs(re(x))) -
             erfc(re(x) + I*re(x)*abs(im(x))/abs(re(x)))) *
          re(x)*abs(im(x))/(2*im(x)*abs(re(x)))))
    assert erfc(x).as_real_imag(deep=False) == erfc(x).as_real_imag()
    assert erfc(w).as_real_imag() == (erfc(w), 0)
    assert erfc(w).as_real_imag(deep=False) == erfc(w).as_real_imag()
    assert erfc(I).as_real_imag() == (1, -erfi(1))

    pytest.raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))

    assert erfc(x).taylor_term(3, x, *(-2 * x / sqrt(pi),
                                       0)) == 2 * x**3 / 3 / sqrt(pi)

    assert erfc(x).limit(x, oo) == 0

    assert erfc(x).diff(x) == -2 * exp(-x**2) / sqrt(pi)
Example #4
0
def test_ei():
    pos = Symbol('p', positive=True)
    neg = Symbol('n', negative=True)
    assert Ei(-pos) == Ei(polar_lift(-1) * pos) - I * pi
    assert Ei(neg) == Ei(polar_lift(neg)) - I * pi
    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x) / x, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(uppergamma),
                -uppergamma(0, x * polar_lift(-1)) - I * pi, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(expint), -expint(1, x * polar_lift(-1)) - I * pi,
                x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x * exp_polar(2 * I * pi)) == Ei(x) + 2 * I * pi
    assert Ei(x * exp_polar(-2 * I * pi)) == Ei(x) - 2 * I * pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x * polar_lift(I)),
                Ei(x * polar_lift(I)).rewrite(Si),
                Ci(x) + I * Si(x) + I * pi / 2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2 * log(x)).rewrite(li) == li(x**2)

    assert Ei(x).series(x) == EulerGamma + log(x) + x + x**2/4 + \
        x**3/18 + x**4/96 + x**5/600 + O(x**6)
Example #5
0
def test_erf():
    assert erf(nan) == nan

    assert erf(oo) == 1
    assert erf(-oo) == -1

    assert erf(0) == 0

    assert erf(I * oo) == oo * I
    assert erf(-I * oo) == -oo * I

    assert erf(-2) == -erf(2)
    assert erf(-x * y) == -erf(x * y)
    assert erf(-x - y) == -erf(x + y)

    assert erf(erfinv(x)) == x
    assert erf(erfcinv(x)) == 1 - x
    assert erf(erf2inv(0, x)) == x
    assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x

    assert erf(I).is_extended_real is False
    assert erf(w).is_extended_real is True
    assert erf(z).is_extended_real is None

    assert conjugate(erf(z)) == erf(conjugate(z))

    assert erf(x).as_leading_term(x) == 2 * x / sqrt(pi)
    assert erf(1 / x).as_leading_term(x) == erf(1 / x)

    assert erf(z).rewrite('uppergamma') == sqrt(z**2) * erf(sqrt(z**2)) / z
    assert erf(z).rewrite('erfc') == S.One - erfc(z)
    assert erf(z).rewrite('erfi') == -I * erfi(I * z)
    assert erf(z).rewrite('fresnels') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('fresnelc') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half],
                                                    -z**2) / sqrt(pi)
    assert erf(z).rewrite('meijerg') == z * meijerg([S.Half], [], [0],
                                                    [-S.Half], z**2) / sqrt(pi)
    assert erf(z).rewrite(
        'expint') == sqrt(z**2) / z - z * expint(S.Half, z**2) / sqrt(S.Pi)

    assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
        2/sqrt(pi)
    assert limit((1 - erf(z)) * exp(z**2) * z, z, oo) == 1 / sqrt(pi)
    assert limit((1 - erf(x)) * exp(x**2) * sqrt(pi) * x, x, oo) == 1
    assert limit(((1 - erf(x)) * exp(x**2) * sqrt(pi) * x - 1) * 2 * x**2, x,
                 oo) == -1

    assert erf(x).as_real_imag() == \
        ((erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
         erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
         I*(erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
         erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
         re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))

    pytest.raises(ArgumentIndexError, lambda: erf(x).fdiff(2))
def test_ei():
    pos = Symbol('p', positive=True)
    neg = Symbol('n', negative=True)
    assert Ei(0) == -oo
    assert Ei(+oo) == oo
    assert Ei(-oo) == 0
    assert Ei(-pos) == Ei(polar_lift(-1) * pos) - I * pi
    assert Ei(neg) == Ei(polar_lift(neg)) - I * pi
    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x) / x, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(uppergamma),
                -uppergamma(0, x * polar_lift(-1)) - I * pi, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(expint), -expint(1, x * polar_lift(-1)) - I * pi,
                x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x * exp_polar(2 * I * pi)) == Ei(x) + 2 * I * pi
    assert Ei(x * exp_polar(-2 * I * pi)) == Ei(x) - 2 * I * pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x * polar_lift(I)),
                Ei(x * polar_lift(I)).rewrite(Si),
                Ci(x) + I * Si(x) + I * pi / 2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2 * log(x)).rewrite(li) == li(x**2)

    assert Ei(x).series(x) == (EulerGamma + log(x) + x + x**2 / 4 + x**3 / 18 +
                               x**4 / 96 + x**5 / 600 + O(x**6))
    assert Ei(1 + x).series(x) == (Ei(1) + E * x + E * x**3 / 6 -
                                   E * x**4 / 12 + 3 * E * x**5 / 40 + O(x**6))

    pytest.raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
def test_ei():
    pos = Symbol('p', positive=True)
    neg = Symbol('n', negative=True)
    assert Ei(0) == -oo
    assert Ei(+oo) == oo
    assert Ei(-oo) == 0
    assert Ei(-pos) == Ei(polar_lift(-1)*pos) - I*pi
    assert Ei(neg) == Ei(polar_lift(neg)) - I*pi
    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x)/x, x)
    assert mytn(Ei(x), Ei(x).rewrite(uppergamma),
                -uppergamma(0, x*polar_lift(-1)) - I*pi, x)
    assert mytn(Ei(x), Ei(x).rewrite(expint),
                -expint(1, x*polar_lift(-1)) - I*pi, x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x*exp_polar(2*I*pi)) == Ei(x) + 2*I*pi
    assert Ei(x*exp_polar(-2*I*pi)) == Ei(x) - 2*I*pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x*polar_lift(I)), Ei(x*polar_lift(I)).rewrite(Si),
                Ci(x) + I*Si(x) + I*pi/2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2*log(x)).rewrite(li) == li(x**2)

    assert Ei(x).series(x) == (EulerGamma + log(x) + x + x**2/4 +
                               x**3/18 + x**4/96 + x**5/600 + O(x**6))
    assert Ei(1 + x).series(x) == (Ei(1) + E*x + E*x**3/6 - E*x**4/12 +
                                   3*E*x**5/40 + O(x**6))

    pytest.raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
def test_erfi():
    assert erfi(nan) == nan

    assert erfi(+oo) == +oo
    assert erfi(-oo) == -oo

    assert erfi(0) == 0

    assert erfi(I * oo) == I
    assert erfi(-I * oo) == -I

    assert erfi(-x) == -erfi(x)

    assert erfi(I * erfinv(x)) == I * x
    assert erfi(I * erfcinv(x)) == I * (1 - x)
    assert erfi(I * erf2inv(0, x)) == I * x

    assert erfi(I).is_extended_real is False
    assert erfi(w).is_extended_real is True
    assert erfi(z).is_extended_real is None

    assert conjugate(erfi(z)) == erfi(conjugate(z))

    assert erfi(z).rewrite('erf') == -I * erf(I * z)
    assert erfi(z).rewrite('erfc') == I * erfc(I * z) - I
    assert erfi(z).rewrite('fresnels') == (1 - I) * (
        fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 + I) / sqrt(pi)))
    assert erfi(z).rewrite('fresnelc') == (1 - I) * (
        fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 + I) / sqrt(pi)))
    assert erfi(z).rewrite('hyper') == 2 * z * hyper(
        [Rational(1, 2)], [Rational(3, 2)], z**2) / sqrt(pi)
    assert erfi(z).rewrite('meijerg') == z * meijerg(
        [Rational(1, 2)], [], [0], [Rational(-1, 2)], -z**2) / sqrt(pi)
    assert erfi(z).rewrite('uppergamma') == (
        sqrt(-z**2) / z * (uppergamma(Rational(1, 2), -z**2) / sqrt(pi) - 1))
    assert erfi(z).rewrite('expint') == sqrt(-z**2) / z - z * expint(
        Rational(1, 2), -z**2) / sqrt(pi)

    assert erfi(x).as_real_imag() == \
        ((erfi(re(x) - I*re(x)*abs(im(x))/abs(re(x)))/2 +
          erfi(re(x) + I*re(x)*abs(im(x))/abs(re(x)))/2,
          I*(erfi(re(x) - I*re(x)*abs(im(x))/abs(re(x))) -
             erfi(re(x) + I*re(x)*abs(im(x))/abs(re(x)))) *
          re(x)*abs(im(x))/(2*im(x)*abs(re(x)))))
    assert erfi(x).as_real_imag(deep=False) == erfi(x).as_real_imag()
    assert erfi(w).as_real_imag() == (erfi(w), 0)
    assert erfi(w).as_real_imag(deep=False) == erfi(w).as_real_imag()
    assert erfi(I).as_real_imag() == (0, erf(1))

    pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))

    assert erfi(x).taylor_term(3, x, *(2 * x / sqrt(pi),
                                       0)) == 2 * x**3 / 3 / sqrt(pi)

    assert erfi(x).limit(x, oo) == oo
Example #9
0
def test_lowergamma():
    assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y)
    assert td(lowergamma(randcplx(), y), y)
    assert td(lowergamma(x, randcplx()), x)
    assert lowergamma(x, y).diff(x) == \
        gamma(x)*polygamma(0, x) - uppergamma(x, y)*log(y) \
        - meijerg([], [1, 1], [0, 0, x], [], y)
    pytest.raises(ArgumentIndexError, lambda: lowergamma(x, y).fdiff(3))

    assert lowergamma(Rational(1, 2), x) == sqrt(pi)*erf(sqrt(x))
    assert not lowergamma(Rational(1, 2) - 3, x).has(lowergamma)
    assert not lowergamma(Rational(1, 2) + 3, x).has(lowergamma)
    assert lowergamma(Rational(1, 2), x, evaluate=False).has(lowergamma)
    assert tn(lowergamma(Rational(1, 2) + 3, x, evaluate=False),
              lowergamma(Rational(1, 2) + 3, x), x)
    assert tn(lowergamma(Rational(1, 2) - 3, x, evaluate=False),
              lowergamma(Rational(1, 2) - 3, x), x)
    assert lowergamma(0, 1) == zoo

    assert tn_branch(-3, lowergamma)
    assert tn_branch(-4, lowergamma)
    assert tn_branch(Rational(1, 3), lowergamma)
    assert tn_branch(pi, lowergamma)
    assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x)
    assert lowergamma(y, exp_polar(5*pi*I)*x) == \
        exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I))
    assert lowergamma(-2, exp_polar(5*pi*I)*x) == \
        lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I

    assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y))
    assert conjugate(lowergamma(x, 0)) == conjugate(lowergamma(x, 0))
    assert conjugate(lowergamma(x, -oo)) == conjugate(lowergamma(x, -oo))

    assert lowergamma(
        x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x)
    k = Symbol('k', integer=True)
    assert lowergamma(
        k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k)
    k = Symbol('k', integer=True, positive=False)
    assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y)
    assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)

    assert (x*lowergamma(x, 1)/gamma(x + 1)).limit(x, 0) == 1
def test_si():
    assert Si(I*x) == I*Shi(x)
    assert Shi(I*x) == I*Si(x)
    assert Si(-I*x) == -I*Shi(x)
    assert Shi(-I*x) == -I*Si(x)
    assert Si(-x) == -Si(x)
    assert Shi(-x) == -Shi(x)
    assert Si(exp_polar(2*pi*I)*x) == Si(x)
    assert Si(exp_polar(-2*pi*I)*x) == Si(x)
    assert Shi(exp_polar(2*pi*I)*x) == Shi(x)
    assert Shi(exp_polar(-2*pi*I)*x) == Shi(x)

    assert Si(oo) == pi/2
    assert Si(-oo) == -pi/2
    assert Shi(oo) == oo
    assert Shi(-oo) == -oo

    assert mytd(Si(x), sin(x)/x, x)
    assert mytd(Shi(x), sinh(x)/x, x)

    assert mytn(Si(x), Si(x).rewrite(Ei),
                -I*(-Ei(x*exp_polar(-I*pi/2))/2
                    + Ei(x*exp_polar(I*pi/2))/2 - I*pi) + pi/2, x)
    assert mytn(Si(x), Si(x).rewrite(expint),
                -I*(-expint(1, x*exp_polar(-I*pi/2))/2 +
                    expint(1, x*exp_polar(I*pi/2))/2) + pi/2, x)
    assert mytn(Shi(x), Shi(x).rewrite(Ei),
                Ei(x)/2 - Ei(x*exp_polar(I*pi))/2 + I*pi/2, x)
    assert mytn(Shi(x), Shi(x).rewrite(expint),
                expint(1, x)/2 - expint(1, x*exp_polar(I*pi))/2 - I*pi/2, x)

    assert tn_arg(Si)
    assert tn_arg(Shi)

    assert Si(x).nseries(x, n=8) == \
        x - x**3/18 + x**5/600 - x**7/35280 + O(x**9)
    assert Shi(x).nseries(x, n=8) == \
        x + x**3/18 + x**5/600 + x**7/35280 + O(x**9)
    assert Si(sin(x)).nseries(x, n=5) == x - 2*x**3/9 + 17*x**5/450 + O(x**7)
    assert Si(x).series(x, 1, n=3) == \
        Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1))

    pytest.raises(ArgumentIndexError, lambda: Si(z).fdiff(2))
Example #11
0
def test_lowergamma():
    from diofant import meijerg, exp_polar, I, expint
    assert lowergamma(x, y).diff(y) == y**(x - 1) * exp(-y)
    assert td(lowergamma(randcplx(), y), y)
    assert td(lowergamma(x, randcplx()), x)
    assert lowergamma(x, y).diff(x) == \
        gamma(x)*polygamma(0, x) - uppergamma(x, y)*log(y) \
        - meijerg([], [1, 1], [0, 0, x], [], y)

    assert lowergamma(S.Half, x) == sqrt(pi) * erf(sqrt(x))
    assert not lowergamma(S.Half - 3, x).has(lowergamma)
    assert not lowergamma(S.Half + 3, x).has(lowergamma)
    assert lowergamma(S.Half, x, evaluate=False).has(lowergamma)
    assert tn(lowergamma(S.Half + 3, x, evaluate=False),
              lowergamma(S.Half + 3, x), x)
    assert tn(lowergamma(S.Half - 3, x, evaluate=False),
              lowergamma(S.Half - 3, x), x)

    assert tn_branch(-3, lowergamma)
    assert tn_branch(-4, lowergamma)
    assert tn_branch(Rational(1, 3), lowergamma)
    assert tn_branch(pi, lowergamma)
    assert lowergamma(3, exp_polar(4 * pi * I) * x) == lowergamma(3, x)
    assert lowergamma(y, exp_polar(5*pi*I)*x) == \
        exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I))
    assert lowergamma(-2, exp_polar(5*pi*I)*x) == \
        lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I

    assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x),
                                                     conjugate(y))
    assert conjugate(lowergamma(x, 0)) == conjugate(lowergamma(x, 0))
    assert conjugate(lowergamma(x, -oo)) == conjugate(lowergamma(x, -oo))

    assert lowergamma(
        x, y).rewrite(expint) == -y**x * expint(-x + 1, y) + gamma(x)
    k = Symbol('k', integer=True)
    assert lowergamma(
        k, y).rewrite(expint) == -y**k * expint(-k + 1, y) + gamma(k)
    k = Symbol('k', integer=True, positive=False)
    assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y)
    assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)
def test_erfc():
    assert erfc(nan) == nan

    assert erfc(oo) == 0
    assert erfc(-oo) == 2

    assert erfc(0) == 1

    assert erfc(I*oo) == -oo*I
    assert erfc(-I*oo) == oo*I

    assert erfc(-x) == Integer(2) - erfc(x)
    assert erfc(erfcinv(x)) == x
    assert erfc(erfinv(x)) == 1 - x

    assert erfc(I).is_extended_real is False
    assert erfc(w).is_extended_real is True
    assert erfc(z).is_extended_real is None

    assert conjugate(erfc(z)) == erfc(conjugate(z))

    assert erfc(x).as_leading_term(x) == 1
    assert erfc(1/x).as_leading_term(x) == erfc(1/x)

    assert erfc(z).rewrite('erf') == 1 - erf(z)
    assert erfc(z).rewrite('erfi') == 1 + I*erfi(I*z)
    assert erfc(z).rewrite('fresnels') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
                                                       I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erfc(z).rewrite('fresnelc') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
                                                       I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erfc(z).rewrite('hyper') == 1 - 2*z*hyper([Rational(1, 2)], [Rational(3, 2)], -z**2)/sqrt(pi)
    assert erfc(z).rewrite('meijerg') == 1 - z*meijerg([Rational(1, 2)], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi)
    assert erfc(z).rewrite('uppergamma') == 1 - sqrt(z**2)*erf(sqrt(z**2))/z
    assert erfc(z).rewrite('expint') == 1 - sqrt(z**2)/z + z*expint(Rational(1, 2), z**2)/sqrt(pi)

    assert erfc(x).as_real_imag() == \
        ((erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
          erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
          I*(erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
             erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
          re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
    assert erfc(x).as_real_imag(deep=False) == erfc(x).as_real_imag()
    assert erfc(w).as_real_imag() == (erfc(w), 0)
    assert erfc(w).as_real_imag(deep=False) == erfc(w).as_real_imag()
    assert erfc(I).as_real_imag() == (1, -erfi(1))

    pytest.raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))

    assert erfc(x).taylor_term(3, x, *(-2*x/sqrt(pi), 0)) == 2*x**3/3/sqrt(pi)

    assert erfc(x).limit(x, oo) == 0

    assert erfc(x).diff(x) == -2*exp(-x**2)/sqrt(pi)
Example #13
0
def test_uppergamma():
    from diofant import meijerg, exp_polar, I, expint
    assert uppergamma(4, 0) == 6
    assert uppergamma(x, oo) == 0
    assert uppergamma(x, y).diff(y) == -y**(x - 1) * exp(-y)
    assert td(uppergamma(randcplx(), y), y)
    assert uppergamma(x, y).diff(x) == \
        uppergamma(x, y)*log(y) + meijerg([], [1, 1], [0, 0, x], [], y)
    assert td(uppergamma(x, randcplx()), x)
    pytest.raises(ArgumentIndexError, lambda: uppergamma(x, y).fdiff(3))

    assert uppergamma(S.Half, x) == sqrt(pi) * (1 - erf(sqrt(x)))
    assert not uppergamma(S.Half - 3, x).has(uppergamma)
    assert not uppergamma(S.Half + 3, x).has(uppergamma)
    assert uppergamma(S.Half, x, evaluate=False).has(uppergamma)
    assert tn(uppergamma(S.Half + 3, x, evaluate=False),
              uppergamma(S.Half + 3, x), x)
    assert tn(uppergamma(S.Half - 3, x, evaluate=False),
              uppergamma(S.Half - 3, x), x)

    assert tn_branch(-3, uppergamma)
    assert tn_branch(-4, uppergamma)
    assert tn_branch(Rational(1, 3), uppergamma)
    assert tn_branch(pi, uppergamma)
    assert uppergamma(3, exp_polar(4 * pi * I) * x) == uppergamma(3, x)
    assert uppergamma(y, exp_polar(5*pi*I)*x) == \
        exp(4*I*pi*y)*uppergamma(y, x*exp_polar(pi*I)) + \
        gamma(y)*(1 - exp(4*pi*I*y))
    assert uppergamma(-2, exp_polar(5*pi*I)*x) == \
        uppergamma(-2, x*exp_polar(I*pi)) - 2*pi*I

    assert uppergamma(-2, x) == expint(3, x) / x**2

    assert conjugate(uppergamma(x, y)) == uppergamma(conjugate(x),
                                                     conjugate(y))
    assert conjugate(uppergamma(x, 0)) == gamma(conjugate(x))
    assert conjugate(uppergamma(x, -oo)) == conjugate(uppergamma(x, -oo))

    assert uppergamma(x, y).rewrite(expint) == y**x * expint(-x + 1, y)
    assert uppergamma(x, y).rewrite(lowergamma) == gamma(x) - lowergamma(x, y)
def test_erfi():
    assert erfi(nan) == nan

    assert erfi(+oo) == +oo
    assert erfi(-oo) == -oo

    assert erfi(0) == 0

    assert erfi(I*oo) == I
    assert erfi(-I*oo) == -I

    assert erfi(-x) == -erfi(x)

    assert erfi(I*erfinv(x)) == I*x
    assert erfi(I*erfcinv(x)) == I*(1 - x)
    assert erfi(I*erf2inv(0, x)) == I*x

    assert erfi(I).is_extended_real is False
    assert erfi(w).is_extended_real is True
    assert erfi(z).is_extended_real is None

    assert conjugate(erfi(z)) == erfi(conjugate(z))

    assert erfi(z).rewrite('erf') == -I*erf(I*z)
    assert erfi(z).rewrite('erfc') == I*erfc(I*z) - I
    assert erfi(z).rewrite('fresnels') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
                                                   I*fresnels(z*(1 + I)/sqrt(pi)))
    assert erfi(z).rewrite('fresnelc') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
                                                   I*fresnels(z*(1 + I)/sqrt(pi)))
    assert erfi(z).rewrite('hyper') == 2*z*hyper([Rational(1, 2)], [Rational(3, 2)], z**2)/sqrt(pi)
    assert erfi(z).rewrite('meijerg') == z*meijerg([Rational(1, 2)], [], [0], [Rational(-1, 2)], -z**2)/sqrt(pi)
    assert erfi(z).rewrite('uppergamma') == (sqrt(-z**2)/z*(uppergamma(Rational(1, 2),
                                                                       -z**2)/sqrt(pi) - 1))
    assert erfi(z).rewrite('expint') == sqrt(-z**2)/z - z*expint(Rational(1, 2), -z**2)/sqrt(pi)

    assert erfi(x).as_real_imag() == \
        ((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
          erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
          I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
             erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
          re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
    assert erfi(x).as_real_imag(deep=False) == erfi(x).as_real_imag()
    assert erfi(w).as_real_imag() == (erfi(w), 0)
    assert erfi(w).as_real_imag(deep=False) == erfi(w).as_real_imag()
    assert erfi(I).as_real_imag() == (0, erf(1))

    pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))

    assert erfi(x).taylor_term(3, x, *(2*x/sqrt(pi), 0)) == 2*x**3/3/sqrt(pi)

    assert erfi(x).limit(x, oo) == oo
Example #15
0
def test_erfi():
    assert erfi(nan) == nan

    assert erfi(oo) == S.Infinity
    assert erfi(-oo) == S.NegativeInfinity

    assert erfi(0) == S.Zero

    assert erfi(I * oo) == I
    assert erfi(-I * oo) == -I

    assert erfi(-x) == -erfi(x)

    assert erfi(I * erfinv(x)) == I * x
    assert erfi(I * erfcinv(x)) == I * (1 - x)
    assert erfi(I * erf2inv(0, x)) == I * x

    assert erfi(I).is_extended_real is False
    assert erfi(w).is_extended_real is True
    assert erfi(z).is_extended_real is None

    assert conjugate(erfi(z)) == erfi(conjugate(z))

    assert erfi(z).rewrite('erf') == -I * erf(I * z)
    assert erfi(z).rewrite('erfc') == I * erfc(I * z) - I
    assert erfi(z).rewrite('fresnels') == (1 - I) * (
        fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 + I) / sqrt(pi)))
    assert erfi(z).rewrite('fresnelc') == (1 - I) * (
        fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 + I) / sqrt(pi)))
    assert erfi(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half], z
                                                     **2) / sqrt(pi)
    assert erfi(z).rewrite('meijerg') == z * meijerg(
        [S.Half], [], [0], [-S.Half], -z**2) / sqrt(pi)
    assert erfi(z).rewrite('uppergamma') == (
        sqrt(-z**2) / z * (uppergamma(S.Half, -z**2) / sqrt(S.Pi) - S.One))
    assert erfi(z).rewrite(
        'expint') == sqrt(-z**2) / z - z * expint(S.Half, -z**2) / sqrt(S.Pi)

    assert erfi(x).as_real_imag() == \
        ((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
         erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
         I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
         erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
         re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))

    pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))
Example #16
0
def test_erfc():
    assert erfc(nan) == nan

    assert erfc(oo) == 0
    assert erfc(-oo) == 2

    assert erfc(0) == 1

    assert erfc(I * oo) == -oo * I
    assert erfc(-I * oo) == oo * I

    assert erfc(-x) == Integer(2) - erfc(x)
    assert erfc(erfcinv(x)) == x

    assert erfc(I).is_extended_real is False
    assert erfc(w).is_extended_real is True
    assert erfc(z).is_extended_real is None

    assert conjugate(erfc(z)) == erfc(conjugate(z))

    assert erfc(x).as_leading_term(x) == S.One
    assert erfc(1 / x).as_leading_term(x) == erfc(1 / x)

    assert erfc(z).rewrite('erf') == 1 - erf(z)
    assert erfc(z).rewrite('erfi') == 1 + I * erfi(I * z)
    assert erfc(z).rewrite('fresnels') == 1 - (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erfc(z).rewrite('fresnelc') == 1 - (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erfc(z).rewrite(
        'hyper') == 1 - 2 * z * hyper([S.Half], [3 * S.Half], -z**2) / sqrt(pi)
    assert erfc(z).rewrite('meijerg') == 1 - z * meijerg(
        [S.Half], [], [0], [-S.Half], z**2) / sqrt(pi)
    assert erfc(z).rewrite(
        'uppergamma') == 1 - sqrt(z**2) * erf(sqrt(z**2)) / z
    assert erfc(z).rewrite('expint') == S.One - sqrt(z**2) / z + z * expint(
        S.Half, z**2) / sqrt(S.Pi)

    assert erfc(x).as_real_imag() == \
        ((erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
         erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
         I*(erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
         erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
         re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))

    pytest.raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))
Example #17
0
    def eval(cls, a, z):
        from diofant import unpolarify, I, expint
        if z.is_Number:
            if z is S.Infinity:
                return S.Zero
            elif z is S.Zero:
                # TODO: Holds only for Re(a) > 0:
                return gamma(a)

        # We extract branching information here. C/f lowergamma.
        nx, n = z.extract_branch_factor()
        if a.is_integer and (a > 0) is S.true:
            nx = unpolarify(z)
            if z != nx:
                return uppergamma(a, nx)
        elif a.is_integer and (a <= 0) is S.true:
            if n != 0:
                return -2 * pi * I * n * (-1)**(
                    -a) / factorial(-a) + uppergamma(a, nx)
        elif n != 0:
            return gamma(a) * (1 - exp(2 * pi * I * n * a)) + exp(
                2 * pi * I * n * a) * uppergamma(a, nx)

        # Special values.
        if a.is_Number:
            # TODO this should be non-recursive
            if a is S.One:
                return exp(-z)
            elif a is S.Half:
                return sqrt(pi) * (1 - erf(sqrt(z)))  # TODO could use erfc...
            elif a.is_Integer or (2 * a).is_Integer:
                b = a - 1
                if b.is_positive:
                    return b * cls(b, z) + z**b * exp(-z)
                elif b.is_Integer:
                    return expint(-b, z) * unpolarify(z)**(b + 1)

                if not a.is_Integer:
                    return (cls(a + 1, z) - z**a * exp(-z)) / a
Example #18
0
def test_function__eval_nseries():
    n = Symbol('n')

    assert sin(x)._eval_nseries(x, 2, None) == x + O(x**3)
    assert sin(x + 1)._eval_nseries(x, 2, None) == x*cos(1) + sin(1) + O(x**2)
    assert sin(pi*(1 - x))._eval_nseries(x, 2, None) == pi*x + O(x**3)
    assert acos(1 - x**2)._eval_nseries(x, 2, None) == sqrt(2)*x + O(x**2)
    assert polygamma(n, x + 1)._eval_nseries(x, 2, None) == \
        polygamma(n, 1) + polygamma(n + 1, 1)*x + O(x**2)
    pytest.raises(PoleError, lambda: sin(1/x)._eval_nseries(x, 2, None))
    assert acos(1 - x)._eval_nseries(x, 4, None) == sqrt(2)*sqrt(x) + \
        sqrt(2)*x**Rational(3, 2)/12 + O(x**2)
    assert acos(1 + x)._eval_nseries(x, 4, None) == sqrt(2)*I*sqrt(x) - \
        sqrt(2)*I*x**(3/2)/12 + O(x**2)  # XXX: wrong, branch cuts
    assert loggamma(1/x)._eval_nseries(x, 0, None) == \
        log(x)/2 - log(x)/x - 1/x + O(1, x)
    assert loggamma(log(1/x)).nseries(x, n=1, logx=y) == loggamma(-y)

    # issue sympy/sympy#6725:
    assert expint(Rational(3, 2), -x)._eval_nseries(x, 8, None) == \
        2 - 2*I*sqrt(pi)*sqrt(x) - 2*x - x**2/3 - x**3/15 - x**4/84 + O(x**5)
    assert sin(sqrt(x))._eval_nseries(x, 6, None) == \
        sqrt(x) - x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + O(x**Rational(7, 2))
Example #19
0
def test_function__eval_nseries():
    n = Symbol('n')

    assert sin(x)._eval_nseries(x, 2, None) == x + O(x**3)
    assert sin(x + 1)._eval_nseries(x, 2, None) == x*cos(1) + sin(1) + O(x**2)
    assert sin(pi*(1 - x))._eval_nseries(x, 2, None) == pi*x + O(x**3)
    assert acos(1 - x**2)._eval_nseries(x, 2, None) == sqrt(2)*x + O(x**2)
    assert polygamma(n, x + 1)._eval_nseries(x, 2, None) == \
        polygamma(n, 1) + polygamma(n + 1, 1)*x + O(x**2)
    pytest.raises(PoleError, lambda: sin(1/x)._eval_nseries(x, 2, None))
    assert acos(1 - x)._eval_nseries(x, 4, None) == sqrt(2)*sqrt(x) + \
        sqrt(2)*x**Rational(3, 2)/12 + O(x**2)
    assert acos(1 + x)._eval_nseries(x, 4, None) == sqrt(2)*I*sqrt(x) - \
        sqrt(2)*I*x**(3/2)/12 + O(x**2)  # XXX: wrong, branch cuts
    assert loggamma(1/x)._eval_nseries(x, 0, None) == \
        log(x)/2 - log(x)/x - 1/x + O(1, x)
    assert loggamma(log(1/x)).nseries(x, n=1, logx=y) == loggamma(-y)

    # issue sympy/sympy#6725:
    assert expint(Rational(3, 2), -x)._eval_nseries(x, 8, None) == \
        2 - 2*I*sqrt(pi)*sqrt(x) - 2*x - x**2/3 - x**3/15 - x**4/84 + O(x**5)
    assert sin(sqrt(x))._eval_nseries(x, 6, None) == \
        sqrt(x) - x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + O(x**Rational(7, 2))
Example #20
0
def test_expint():
    from diofant import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei
    aneg = Symbol('a', negative=True)
    u = Symbol('u', polar=True)

    assert mellin_transform(E1(x), x, s) == (gamma(s) / s, (0, oo), True)
    assert inverse_mellin_transform(gamma(s) / s, s, x,
                                    (0, oo)).rewrite(expint).expand() == E1(x)
    assert mellin_transform(expint(a, x), x, s) == \
        (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True)
    # XXX IMT has hickups with complicated strips ...
    assert simplify(unpolarify(
                    inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x,
                  (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \
        expint(aneg, x)

    assert mellin_transform(Si(x), x, s) == \
        (-2**s*sqrt(pi)*gamma(s/2 + Rational(1, 2))/(
        2*s*gamma(-s/2 + 1)), (-1, 0), True)
    assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
                                    / (2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
        == Si(x)

    assert mellin_transform(Ci(sqrt(x)), x, s) == \
        (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + Rational(1, 2))), (0, 1), True)
    assert inverse_mellin_transform(
        -4**s * sqrt(pi) * gamma(s) / (2 * s * gamma(-s + Rational(1, 2))), s,
        u, (0, 1)).expand() == Ci(sqrt(u))

    # TODO LT of Si, Shi, Chi is a mess ...
    assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2) / 2 / s, 0, True)
    assert laplace_transform(expint(a, x), x, s) == \
        (lerchphi(s*polar_lift(-1), 1, a), 0, Integer(0) < re(a))
    assert laplace_transform(expint(1, x), x, s) == (log(s + 1) / s, 0, True)
    assert laplace_transform(expint(2, x), x, s) == \
        ((s - log(s + 1))/s**2, 0, True)

    assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \
        Heaviside(u)*Ci(u)
    assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \
        Heaviside(x)*E1(x)
    assert inverse_laplace_transform((s - log(s + 1))/s**2, s,
                x).rewrite(expint).expand() == \
        (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
def test_li():
    z = Symbol("z")
    zr = Symbol("z", extended_real=True)
    zp = Symbol("z", positive=True)
    zn = Symbol("z", negative=True)

    assert li(0) == 0
    assert li(1) == -oo
    assert li(oo) == oo

    assert isinstance(li(z), li)

    assert diff(li(z), z) == 1/log(z)
    pytest.raises(ArgumentIndexError, lambda: li(z).fdiff(2))

    assert conjugate(li(z)) == li(conjugate(z))
    assert conjugate(li(-zr)) == li(-zr)
    assert conjugate(li(-zp)) == conjugate(li(-zp))
    assert conjugate(li(zn)) == conjugate(li(zn))

    assert li(z).rewrite(Li) == Li(z) + li(2)
    assert li(z).rewrite(Ei) == Ei(log(z))
    assert li(z).rewrite(uppergamma) == (-log(1/log(z))/2 - log(-log(z)) +
                                         log(log(z))/2 - expint(1, -log(z)))
    assert li(z).rewrite(Si) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Ci) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Shi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(Chi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(hyper) == (log(z)*hyper((1, 1), (2, 2), log(z)) -
                                    log(1/log(z))/2 + log(log(z))/2 + EulerGamma)
    assert li(z).rewrite(meijerg) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 -
                                      meijerg(((), (1,)), ((0, 0), ()), -log(z)))
Example #22
0
def test_expint():
    aneg = Symbol('a', negative=True)
    u = Symbol('u', polar=True)

    assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True)
    assert inverse_mellin_transform(gamma(s)/s, s, x,
                                    (0, oo)).rewrite(expint).expand() == E1(x)
    assert mellin_transform(expint(a, x), x, s) == \
        (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True)
    # XXX IMT has hickups with complicated strips ...
    assert simplify(unpolarify(
                    inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x,
                                             (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \
        expint(aneg, x)

    assert mellin_transform(Si(x), x, s) == \
        (-2**s*sqrt(pi)*gamma(s/2 + Rational(1, 2))/(
            2*s*gamma(-s/2 + 1)), (-1, 0), True)
    assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
                                    / (2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
        == Si(x)

    assert mellin_transform(Ci(sqrt(x)), x, s) == \
        (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + Rational(1, 2))), (0, 1), True)
    assert inverse_mellin_transform(
        -4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + Rational(1, 2))),
        s, u, (0, 1)).expand() == Ci(sqrt(u))

    # TODO LT of Si, Shi, Chi is a mess ...
    assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True)
    assert laplace_transform(expint(a, x), x, s) == \
        (lerchphi(s*polar_lift(-1), 1, a), 0, Integer(0) < re(a))
    assert laplace_transform(expint(1, x), x, s) == (log(s + 1)/s, 0, True)
    assert laplace_transform(expint(2, x), x, s) == \
        ((s - log(s + 1))/s**2, 0, True)

    assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \
        Heaviside(u)*Ci(u)
    assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \
        Heaviside(x)*E1(x)
    assert inverse_laplace_transform((s - log(s + 1))/s**2, s,
                                     x).rewrite(expint).expand() == \
        (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
Example #23
0
def test_expint():
    assert mytn(expint(x, y),
                expint(x, y).rewrite(uppergamma),
                y**(x - 1) * uppergamma(1 - x, y), x)
    assert mytd(expint(x, y),
                -y**(x - 1) * meijerg([], [1, 1], [0, 0, 1 - x], [], y), x)
    assert mytd(expint(x, y), -expint(x - 1, y), y)
    assert mytn(expint(1, x),
                expint(1, x).rewrite(Ei), -Ei(x * polar_lift(-1)) + I * pi, x)

    assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \
        + 24*exp(-x)/x**4 + 24*exp(-x)/x**5
    assert expint(-Rational(3, 2), x) == \
        exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \
        + 3*sqrt(pi)/(4*x**Rational(5, 2))

    assert tn_branch(expint, 1)
    assert tn_branch(expint, 2)
    assert tn_branch(expint, 3)
    assert tn_branch(expint, 1.7)
    assert tn_branch(expint, pi)

    assert expint(y, x*exp_polar(2*I*pi)) == \
        x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(y, x*exp_polar(-2*I*pi)) == \
        x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(2,
                  x * exp_polar(2 * I * pi)) == 2 * I * pi * x + expint(2, x)
    assert expint(2, x *
                  exp_polar(-2 * I * pi)) == -2 * I * pi * x + expint(2, x)
    assert (expint(n, x * exp_polar(2 * I * pi)) == expint(
        n, x * exp_polar(2 * I * pi), evaluate=False))

    assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x)
    assert (expint(2,
                   x, evaluate=False).rewrite(Shi) == expint(2,
                                                             x,
                                                             evaluate=False))
    assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x)
    assert mytn(E1(polar_lift(I) * x),
                E1(polar_lift(I) * x).rewrite(Si),
                -Ci(x) + I * Si(x) - I * pi / 2, x)

    assert mytn(expint(2, x),
                expint(2, x).rewrite(Ei).rewrite(expint), -x * E1(x) + exp(-x),
                x)
    assert mytn(expint(3, x),
                expint(3, x).rewrite(Ei).rewrite(expint),
                x**2 * E1(x) / 2 + (1 - x) * exp(-x) / 2, x)

    assert expint(Rational(3, 2), z).nseries(z, n=10) == \
        2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \
        2*sqrt(pi)*sqrt(z) + O(z**6)

    assert E1(z).series(z) == -EulerGamma - log(z) + z - \
        z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6)

    assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \
        z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \
        z**5/240 + O(z**6)
    assert (expint(x, x).series(x, x0=1,
                                n=2) == expint(1, 1) + (x - 1) * (-meijerg(
                                    ((), (1, 1)),
                                    ((0, 0, 0), ()), 1) - 1 / E) + O(
                                        (x - 1)**2, (x, 1)))

    pytest.raises(ArgumentIndexError, lambda: expint(x, y).fdiff(3))
Example #24
0
def test_erf():
    assert erf(nan) == nan

    assert erf(oo) == 1
    assert erf(-oo) == -1

    assert erf(0) == 0

    assert erf(I * oo) == oo * I
    assert erf(-I * oo) == -oo * I

    assert erf(-2) == -erf(2)
    assert erf(-x * y) == -erf(x * y)
    assert erf(-x - y) == -erf(x + y)

    assert erf(erfinv(x)) == x
    assert erf(erfcinv(x)) == 1 - x
    assert erf(erf2inv(0, x)) == x
    assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x

    assert erf(I).is_extended_real is False
    assert erf(w).is_extended_real is True
    assert erf(z).is_extended_real is None

    assert conjugate(erf(z)) == erf(conjugate(z))

    assert erf(x).as_leading_term(x) == 2 * x / sqrt(pi)
    assert erf(1 / x).as_leading_term(x) == erf(1 / x)

    assert erf(z).rewrite('uppergamma') == sqrt(z**2) * erf(sqrt(z**2)) / z
    assert erf(z).rewrite('erfc') == 1 - erfc(z)
    assert erf(z).rewrite('erfi') == -I * erfi(I * z)
    assert erf(z).rewrite('fresnels') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('fresnelc') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('hyper') == 2 * z * hyper(
        [Rational(1, 2)], [Rational(3, 2)], -z**2) / sqrt(pi)
    assert erf(z).rewrite('meijerg') == z * meijerg(
        [Rational(1, 2)], [], [0], [Rational(-1, 2)], z**2) / sqrt(pi)
    assert erf(z).rewrite('expint') == sqrt(z**2) / z - z * expint(
        Rational(1, 2), z**2) / sqrt(pi)

    assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
        2/sqrt(pi)
    assert limit((1 - erf(z)) * exp(z**2) * z, z, oo) == 1 / sqrt(pi)
    assert limit((1 - erf(x)) * exp(x**2) * sqrt(pi) * x, x, oo) == 1
    assert limit(((1 - erf(x)) * exp(x**2) * sqrt(pi) * x - 1) * 2 * x**2, x,
                 oo) == -1

    l = Limit((1 - erf(y / x)) * exp(y**2 / x**2), x, 0)
    assert l.doit() == l  # cover _erfs._eval_aseries

    assert erf(x).as_real_imag() == \
        ((erf(re(x) - I*re(x)*abs(im(x))/abs(re(x)))/2 +
          erf(re(x) + I*re(x)*abs(im(x))/abs(re(x)))/2,
          I*(erf(re(x) - I*re(x)*abs(im(x))/abs(re(x))) -
             erf(re(x) + I*re(x)*abs(im(x))/abs(re(x)))) *
          re(x)*abs(im(x))/(2*im(x)*abs(re(x)))))
    assert erf(x).as_real_imag() == erf(x).as_real_imag(deep=False)
    assert erf(w).as_real_imag() == (erf(w), 0)
    assert erf(w).as_real_imag() == erf(w).as_real_imag(deep=False)
    assert erf(I).as_real_imag() == (0, erfi(1))

    pytest.raises(ArgumentIndexError, lambda: erf(x).fdiff(2))

    assert erf(x).taylor_term(3, x, *(2 * x / sqrt(pi),
                                      0)) == -2 * x**3 / 3 / sqrt(pi)
Example #25
0
def test_expint():
    """Test various exponential integrals."""
    assert simplify(
        integrate(exp(-z * x) / x**y, (x, 1, oo), meijerg=True,
                  conds='none').rewrite(expint)) == expint(y, z)

    assert integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(1, z)
    assert integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(2, z).rewrite(Ei).rewrite(expint)
    assert integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(3, z).rewrite(Ei).rewrite(expint).expand()

    t = Symbol('t', positive=True)
    assert integrate(-cos(x) / x, (x, t, oo), meijerg=True).expand() == Ci(t)
    assert integrate(-sin(x)/x, (x, t, oo), meijerg=True).expand() == \
        Si(t) - pi/2
    assert integrate(sin(x) / x, (x, 0, z), meijerg=True) == Si(z)
    assert integrate(sinh(x) / x, (x, 0, z), meijerg=True) == Shi(z)
    assert integrate(exp(-x)/x, x, meijerg=True).expand().rewrite(expint) == \
        I*pi - expint(1, x)
    assert integrate(exp(-x)/x**2, x, meijerg=True).rewrite(expint).expand() \
        == expint(1, x) - exp(-x)/x - I*pi

    u = Symbol('u', polar=True)
    assert integrate(cos(u)/u, u, meijerg=True).expand().as_independent(u)[1] \
        == Ci(u)
    assert integrate(cosh(u)/u, u, meijerg=True).expand().as_independent(u)[1] \
        == Chi(u)

    assert (integrate(
        expint(1, x), x,
        meijerg=True).rewrite(expint).expand() == x * expint(1, x) - exp(-x))
    assert (integrate(
        expint(2, x), x,
        meijerg=True).rewrite(expint).expand() == -x**2 * expint(1, x) / 2 +
            x * exp(-x) / 2 - exp(-x) / 2)
    assert (simplify(
        unpolarify(integrate(expint(
            y, x), x, meijerg=True).rewrite(expint))) == -expint(y + 1, x))

    assert integrate(Si(x), x, meijerg=True) == x * Si(x) + cos(x)
    assert integrate(Ci(u), u, meijerg=True).expand() == u * Ci(u) - sin(u)
    assert integrate(Shi(x), x, meijerg=True) == x * Shi(x) - cosh(x)
    assert integrate(Chi(u), u, meijerg=True).expand() == u * Chi(u) - sinh(u)

    assert integrate(Si(x) * exp(-x), (x, 0, oo), meijerg=True) == pi / 4
    assert integrate(expint(1, x) * sin(x), (x, 0, oo),
                     meijerg=True) == log(2) / 2
def test_expint():
    assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma),
                y**(x - 1)*uppergamma(1 - x, y), x)
    assert mytd(
        expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x)
    assert mytd(expint(x, y), -expint(x - 1, y), y)
    assert mytn(expint(1, x), expint(1, x).rewrite(Ei),
                -Ei(x*polar_lift(-1)) + I*pi, x)

    assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \
        + 24*exp(-x)/x**4 + 24*exp(-x)/x**5
    assert expint(-Rational(3, 2), x) == \
        exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \
        + 3*sqrt(pi)/(4*x**Rational(5, 2))

    assert tn_branch(expint, 1)
    assert tn_branch(expint, 2)
    assert tn_branch(expint, 3)
    assert tn_branch(expint, 1.7)
    assert tn_branch(expint, pi)

    assert expint(y, x*exp_polar(2*I*pi)) == \
        x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(y, x*exp_polar(-2*I*pi)) == \
        x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x)
    assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x)
    assert (expint(n, x*exp_polar(2*I*pi)) ==
            expint(n, x*exp_polar(2*I*pi), evaluate=False))

    assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x)
    assert (expint(2, x, evaluate=False).rewrite(Shi) ==
            expint(2, x, evaluate=False))
    assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x)
    assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si),
                -Ci(x) + I*Si(x) - I*pi/2, x)

    assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint),
                -x*E1(x) + exp(-x), x)
    assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint),
                x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x)

    assert expint(Rational(3, 2), z).nseries(z, n=10) == \
        2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \
        2*sqrt(pi)*sqrt(z) + O(z**6)

    assert E1(z).series(z) == -EulerGamma - log(z) + z - \
        z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6)

    assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \
        z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \
        z**5/240 + O(z**6)
    assert (expint(x, x).series(x, x0=1, n=2) ==
            expint(1, 1) + (x - 1)*(-meijerg(((), (1, 1)),
                                             ((0, 0, 0), ()), 1) - 1/E) +
            O((x - 1)**2, (x, 1)))

    pytest.raises(ArgumentIndexError, lambda: expint(x, y).fdiff(3))
Example #27
0
def test_expint():
    """ Test various exponential integrals. """
    assert simplify(integrate(exp(-z*x)/x**y,
                              (x, 1, oo),
                              meijerg=True,
                              conds='none').rewrite(expint)) == expint(y, z)

    assert integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(1, z)
    assert integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(2, z).rewrite(Ei).rewrite(expint)
    assert integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True,
                     conds='none').rewrite(expint).expand() == \
        expint(3, z).rewrite(Ei).rewrite(expint).expand()

    t = Symbol('t', positive=True)
    assert integrate(-cos(x)/x, (x, t, oo), meijerg=True).expand() == Ci(t)
    assert integrate(-sin(x)/x, (x, t, oo), meijerg=True).expand() == \
        Si(t) - pi/2
    assert integrate(sin(x)/x, (x, 0, z), meijerg=True) == Si(z)
    assert integrate(sinh(x)/x, (x, 0, z), meijerg=True) == Shi(z)
    assert integrate(exp(-x)/x, x, meijerg=True).expand().rewrite(expint) == \
        I*pi - expint(1, x)
    assert integrate(exp(-x)/x**2, x, meijerg=True).rewrite(expint).expand() \
        == expint(1, x) - exp(-x)/x - I*pi

    u = Symbol('u', polar=True)
    assert integrate(cos(u)/u, u, meijerg=True).expand().as_independent(u)[1] \
        == Ci(u)
    assert integrate(cosh(u)/u, u, meijerg=True).expand().as_independent(u)[1] \
        == Chi(u)

    assert (integrate(expint(1, x), x,
                      meijerg=True).rewrite(expint).expand() ==
            x*expint(1, x) - exp(-x))
    assert (integrate(expint(2, x), x,
                      meijerg=True).rewrite(expint).expand() ==
            -x**2*expint(1, x)/2 + x*exp(-x)/2 - exp(-x)/2)
    assert (simplify(unpolarify(integrate(expint(y, x), x,
                                          meijerg=True).rewrite(expint))) ==
            -expint(y + 1, x))

    assert integrate(Si(x), x, meijerg=True) == x*Si(x) + cos(x)
    assert integrate(Ci(u), u, meijerg=True).expand() == u*Ci(u) - sin(u)
    assert integrate(Shi(x), x, meijerg=True) == x*Shi(x) - cosh(x)
    assert integrate(Chi(u), u, meijerg=True).expand() == u*Chi(u) - sinh(u)

    assert integrate(Si(x)*exp(-x), (x, 0, oo), meijerg=True) == pi/4
    assert integrate(expint(1, x)*sin(x), (x, 0, oo), meijerg=True) == log(2)/2
Example #28
0
 def _eval_rewrite_as_expint(self, s, x):
     from diofant import expint
     return expint(1 - s, x) * x**s
def test_erf():
    assert erf(nan) == nan

    assert erf(oo) == 1
    assert erf(-oo) == -1

    assert erf(0) == 0

    assert erf(I*oo) == oo*I
    assert erf(-I*oo) == -oo*I

    assert erf(-2) == -erf(2)
    assert erf(-x*y) == -erf(x*y)
    assert erf(-x - y) == -erf(x + y)

    assert erf(erfinv(x)) == x
    assert erf(erfcinv(x)) == 1 - x
    assert erf(erf2inv(0, x)) == x
    assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x

    assert erf(I).is_extended_real is False
    assert erf(w).is_extended_real is True
    assert erf(z).is_extended_real is None

    assert conjugate(erf(z)) == erf(conjugate(z))

    assert erf(x).as_leading_term(x) == 2*x/sqrt(pi)
    assert erf(1/x).as_leading_term(x) == erf(1/x)

    assert erf(z).rewrite('uppergamma') == sqrt(z**2)*erf(sqrt(z**2))/z
    assert erf(z).rewrite('erfc') == 1 - erfc(z)
    assert erf(z).rewrite('erfi') == -I*erfi(I*z)
    assert erf(z).rewrite('fresnels') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
                                                  I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erf(z).rewrite('fresnelc') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
                                                  I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erf(z).rewrite('hyper') == 2*z*hyper([Rational(1, 2)], [Rational(3, 2)], -z**2)/sqrt(pi)
    assert erf(z).rewrite('meijerg') == z*meijerg([Rational(1, 2)], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi)
    assert erf(z).rewrite('expint') == sqrt(z**2)/z - z*expint(Rational(1, 2), z**2)/sqrt(pi)

    assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
        2/sqrt(pi)
    assert limit((1 - erf(z))*exp(z**2)*z, z, oo) == 1/sqrt(pi)
    assert limit((1 - erf(x))*exp(x**2)*sqrt(pi)*x, x, oo) == 1
    assert limit(((1 - erf(x))*exp(x**2)*sqrt(pi)*x - 1)*2*x**2, x, oo) == -1

    l = Limit((1 - erf(y/x))*exp(y**2/x**2), x, 0)
    assert l.doit() == l  # cover _erfs._eval_aseries

    assert erf(x).as_real_imag() == \
        ((erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
          erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
          I*(erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
             erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
          re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
    assert erf(x).as_real_imag() == erf(x).as_real_imag(deep=False)
    assert erf(w).as_real_imag() == (erf(w), 0)
    assert erf(w).as_real_imag() == erf(w).as_real_imag(deep=False)
    assert erf(I).as_real_imag() == (0, erfi(1))

    pytest.raises(ArgumentIndexError, lambda: erf(x).fdiff(2))

    assert erf(x).taylor_term(3, x, *(2*x/sqrt(pi), 0)) == -2*x**3/3/sqrt(pi)