Example #1
0
def scalar_bar(lookup_table=None, title=" "):
    """ Default scalar bar actor for a given colormap (colorbar)

    Parameters
    ----------
    lookup_table : vtkLookupTable or None
        If None then ``colormap_lookup_table`` is called with default options.
    title : str

    Returns
    -------
    scalar_bar : vtkScalarBarActor

    See Also
    --------
    :func:`dipy.viz.actor.colormap_lookup_table`

    """
    lookup_table_copy = vtk.vtkLookupTable()
    if lookup_table is None:
        lookup_table = colormap_lookup_table()
    # Deepcopy the lookup_table because sometimes vtkPolyDataMapper deletes it
    lookup_table_copy.DeepCopy(lookup_table)
    scalar_bar = vtk.vtkScalarBarActor()
    scalar_bar.SetTitle(title)
    scalar_bar.SetLookupTable(lookup_table_copy)
    scalar_bar.SetNumberOfLabels(6)

    return scalar_bar
Example #2
0
def scalar_bar(lookup_table=None, title=" "):
    """ Default scalar bar actor for a given colormap (colorbar)

    Parameters
    ----------
    lookup_table : vtkLookupTable or None
        If None then ``colormap_lookup_table`` is called with default options.
    title : str

    Returns
    -------
    scalar_bar : vtkScalarBarActor

    See Also
    --------
    :func:`dipy.viz.actor.colormap_lookup_table`

    """
    lookup_table_copy = vtk.vtkLookupTable()
    if lookup_table is None:
        lookup_table = colormap_lookup_table()
    # Deepcopy the lookup_table because sometimes vtkPolyDataMapper deletes it
    lookup_table_copy.DeepCopy(lookup_table)
    scalar_bar = vtk.vtkScalarBarActor()
    scalar_bar.SetTitle(title)
    scalar_bar.SetLookupTable(lookup_table_copy)
    scalar_bar.SetNumberOfLabels(6)

    return scalar_bar
Example #3
0
def line(lines, colors=None, opacity=1, linewidth=1,
         spline_subdiv=None, lod=True, lod_points=10 ** 4, lod_points_size=3,
         lookup_colormap=None):
    """ Create an actor for one or more lines.

    Parameters
    ------------
    lines :  list of arrays

    colors : array (N, 3), list of arrays, tuple (3,), array (K,), None
        If None then a standard orientation colormap is used for every line.
        If one tuple of color is used. Then all streamlines will have the same
        colour.
        If an array (N, 3) is given, where N is equal to the number of lines.
        Then every line is coloured with a different RGB color.
        If a list of RGB arrays is given then every point of every line takes
        a different color.
        If an array (K, ) is given, where K is the number of points of all
        lines then these are considered as the values to be used by the
        colormap.
        If an array (L, ) is given, where L is the number of streamlines then
        these are considered as the values to be used by the colormap per
        streamline.
        If an array (X, Y, Z) or (X, Y, Z, 3) is given then the values for the
        colormap are interpolated automatically using trilinear interpolation.

    opacity : float, optional
        Default is 1.

    linewidth : float, optional
        Line thickness. Default is 1.
    spline_subdiv : int, optional
        Number of splines subdivision to smooth streamtubes. Default is None
        which means no subdivision.
    lod : bool
        Use vtkLODActor(level of detail) rather than vtkActor. Default is True.
        Level of detail actors do not render the full geometry when the
        frame rate is low.
    lod_points : int
        Number of points to be used when LOD is in effect. Default is 10000.
    lod_points_size : int
        Size of points when lod is in effect. Default is 3.
    lookup_colormap : bool, optional
        Add a default lookup table to the colormap. Default is None which calls
        :func:`dipy.viz.actor.colormap_lookup_table`.

    Returns
    ----------
    v : vtkActor or vtkLODActor object
        Line.

    Examples
    ----------
    >>> from dipy.viz import actor, window
    >>> ren = window.Renderer()
    >>> lines = [np.random.rand(10, 3), np.random.rand(20, 3)]
    >>> colors = np.random.rand(2, 3)
    >>> c = actor.line(lines, colors)
    >>> ren.add(c)
    >>> #window.show(ren)
    """
    # Poly data with lines and colors
    poly_data, is_colormap = lines_to_vtk_polydata(lines, colors)
    next_input = poly_data

    # use spline interpolation
    if (spline_subdiv is not None) and (spline_subdiv > 0):
        spline_filter = set_input(vtk.vtkSplineFilter(), next_input)
        spline_filter.SetSubdivideToSpecified()
        spline_filter.SetNumberOfSubdivisions(spline_subdiv)
        spline_filter.Update()
        next_input = spline_filter.GetOutputPort()

    poly_mapper = set_input(vtk.vtkPolyDataMapper(), next_input)
    poly_mapper.ScalarVisibilityOn()
    poly_mapper.SetScalarModeToUsePointFieldData()
    poly_mapper.SelectColorArray("Colors")
    poly_mapper.Update()

    # Color Scale with a lookup table
    if is_colormap:

        if lookup_colormap is None:
            lookup_colormap = colormap_lookup_table()

        poly_mapper.SetLookupTable(lookup_colormap)
        poly_mapper.UseLookupTableScalarRangeOn()
        poly_mapper.Update()

    # Set Actor
    if lod:
        actor = vtk.vtkLODActor()
        actor.SetNumberOfCloudPoints(lod_points)
        actor.GetProperty().SetPointSize(lod_points_size)
    else:
        actor = vtk.vtkActor()

    # actor = vtk.vtkActor()
    actor.SetMapper(poly_mapper)
    actor.GetProperty().SetLineWidth(linewidth)
    actor.GetProperty().SetOpacity(opacity)

    return actor
Example #4
0
def slicer(data, affine=None, value_range=None, opacity=1.,
           lookup_colormap=None, interpolation='linear'):
    """ Cuts 3D scalar or rgb volumes into 2D images

    Parameters
    ----------
    data : array, shape (X, Y, Z) or (X, Y, Z, 3)
        A grayscale or rgb 4D volume as a numpy array.
    affine : array, shape (4, 4)
        Grid to space (usually RAS 1mm) transformation matrix. Default is None.
        If None then the identity matrix is used.
    value_range : None or tuple (2,)
        If None then the values will be interpolated from (data.min(),
        data.max()) to (0, 255). Otherwise from (value_range[0],
        value_range[1]) to (0, 255).
    opacity : float
        Opacity of 0 means completely transparent and 1 completely visible.
    lookup_colormap : vtkLookupTable
        If None (default) then a grayscale map is created.
    interpolation : string
        If 'linear' (default) then linear interpolation is used on the final
        texture mapping. If 'nearest' then nearest neighbor interpolation is
        used on the final texture mapping.

    Returns
    -------
    image_actor : ImageActor
        An object that is capable of displaying different parts of the volume
        as slices. The key method of this object is ``display_extent`` where
        one can input grid coordinates and display the slice in space (or grid)
        coordinates as calculated by the affine parameter.

    """
    if data.ndim != 3:
        if data.ndim == 4:
            if data.shape[3] != 3:
                raise ValueError('Only RGB 3D arrays are currently supported.')
            else:
                nb_components = 3
        else:
            raise ValueError('Only 3D arrays are currently supported.')
    else:
        nb_components = 1

    if value_range is None:
        vol = np.interp(data, xp=[data.min(), data.max()], fp=[0, 255])
    else:
        vol = np.interp(data, xp=[value_range[0], value_range[1]], fp=[0, 255])
    vol = vol.astype('uint8')

    im = vtk.vtkImageData()
    if major_version <= 5:
        im.SetScalarTypeToUnsignedChar()
    I, J, K = vol.shape[:3]
    im.SetDimensions(I, J, K)
    voxsz = (1., 1., 1.)
    # im.SetOrigin(0,0,0)
    im.SetSpacing(voxsz[2], voxsz[0], voxsz[1])
    if major_version <= 5:
        im.AllocateScalars()
        im.SetNumberOfScalarComponents(nb_components)
    else:
        im.AllocateScalars(vtk.VTK_UNSIGNED_CHAR, nb_components)

    # copy data
    # what I do below is the same as what is commented here but much faster
    # for index in ndindex(vol.shape):
    #     i, j, k = index
    #     im.SetScalarComponentFromFloat(i, j, k, 0, vol[i, j, k])
    vol = np.swapaxes(vol, 0, 2)
    vol = np.ascontiguousarray(vol)

    if nb_components == 1:
        vol = vol.ravel()
    else:
        vol = np.reshape(vol, [np.prod(vol.shape[:3]), vol.shape[3]])

    uchar_array = numpy_support.numpy_to_vtk(vol, deep=0)
    im.GetPointData().SetScalars(uchar_array)

    if affine is None:
        affine = np.eye(4)

    # Set the transform (identity if none given)
    transform = vtk.vtkTransform()
    transform_matrix = vtk.vtkMatrix4x4()
    transform_matrix.DeepCopy((
        affine[0][0], affine[0][1], affine[0][2], affine[0][3],
        affine[1][0], affine[1][1], affine[1][2], affine[1][3],
        affine[2][0], affine[2][1], affine[2][2], affine[2][3],
        affine[3][0], affine[3][1], affine[3][2], affine[3][3]))
    transform.SetMatrix(transform_matrix)
    transform.Inverse()

    # Set the reslicing
    image_resliced = vtk.vtkImageReslice()
    set_input(image_resliced, im)
    image_resliced.SetResliceTransform(transform)
    image_resliced.AutoCropOutputOn()

    # Adding this will allow to support anisotropic voxels
    # and also gives the opportunity to slice per voxel coordinates

    RZS = affine[:3, :3]
    zooms = np.sqrt(np.sum(RZS * RZS, axis=0))
    image_resliced.SetOutputSpacing(*zooms)

    image_resliced.SetInterpolationModeToLinear()
    image_resliced.Update()

    if nb_components == 1:
        if lookup_colormap is None:
            # Create a black/white lookup table.
            lut = colormap_lookup_table((0, 255), (0, 0), (0, 0), (0, 1))
        else:
            lut = lookup_colormap

    x1, x2, y1, y2, z1, z2 = im.GetExtent()
    ex1, ex2, ey1, ey2, ez1, ez2 = image_resliced.GetOutput().GetExtent()

    class ImageActor(vtk.vtkImageActor):

        def input_connection(self, output):
            if vtk.VTK_MAJOR_VERSION <= 5:
                self.SetInput(output.GetOutput())
            else:
                self.GetMapper().SetInputConnection(output.GetOutputPort())
            self.output = output
            self.shape = (ex2 + 1, ey2 + 1, ez2 + 1)

        def display_extent(self, x1, x2, y1, y2, z1, z2):
            self.SetDisplayExtent(x1, x2, y1, y2, z1, z2)
            if vtk.VTK_MAJOR_VERSION > 5:
                self.Update()

        def display(self, x=None, y=None, z=None):
            if x is None and y is None and z is None:
                self.display_extent(ex1, ex2, ey1, ey2, ez2/2, ez2/2)
            if x is not None:
                self.display_extent(x, x, ey1, ey2, ez1, ez2)
            if y is not None:
                self.display_extent(ex1, ex2, y, y, ez1, ez2)
            if z is not None:
                self.display_extent(ex1, ex2, ey1, ey2, z, z)

        def opacity(self, value):
            if vtk.VTK_MAJOR_VERSION <= 5:
                self.SetOpacity(value)
            else:
                self.GetProperty().SetOpacity(value)

        def copy(self):
            im_actor = ImageActor()
            im_actor.input_connection(self.output)
            im_actor.SetDisplayExtent(*self.GetDisplayExtent())
            im_actor.opacity(opacity)
            return im_actor

    image_actor = ImageActor()
    if nb_components == 1:
        plane_colors = vtk.vtkImageMapToColors()
        plane_colors.SetLookupTable(lut)
        plane_colors.SetInputConnection(image_resliced.GetOutputPort())
        plane_colors.Update()
        image_actor.input_connection(plane_colors)
    else:
        image_actor.input_connection(image_resliced)
    image_actor.display()
    image_actor.opacity(opacity)

    if interpolation == 'nearest':
        image_actor.SetInterpolate(False)
    else:
        image_actor.SetInterpolate(True)

    if major_version >= 6:
        image_actor.GetMapper().BorderOn()

    return image_actor
Example #5
0
def streamtube(lines, colors=None, opacity=1, linewidth=0.1, tube_sides=9,
               lod=True, lod_points=10 ** 4, lod_points_size=3,
               spline_subdiv=None, lookup_colormap=None):
    """ Uses streamtubes to visualize polylines

    Parameters
    ----------
    lines : list
        list of N curves represented as 2D ndarrays

    colors : array (N, 3), list of arrays, tuple (3,), array (K,), None
        If None then a standard orientation colormap is used for every line.
        If one tuple of color is used. Then all streamlines will have the same
        colour.
        If an array (N, 3) is given, where N is equal to the number of lines.
        Then every line is coloured with a different RGB color.
        If a list of RGB arrays is given then every point of every line takes
        a different color.
        If an array (K, ) is given, where K is the number of points of all
        lines then these are considered as the values to be used by the
        colormap.
        If an array (L, ) is given, where L is the number of streamlines then
        these are considered as the values to be used by the colormap per
        streamline.
        If an array (X, Y, Z) or (X, Y, Z, 3) is given then the values for the
        colormap are interpolated automatically using trilinear interpolation.

    opacity : float
        Default is 1.
    linewidth : float
        Default is 0.01.
    tube_sides : int
        Default is 9.
    lod : bool
        Use vtkLODActor(level of detail) rather than vtkActor. Default is True.
        Level of detail actors do not render the full geometry when the
        frame rate is low.
    lod_points : int
        Number of points to be used when LOD is in effect. Default is 10000.
    lod_points_size : int
        Size of points when lod is in effect. Default is 3.
    spline_subdiv : int
        Number of splines subdivision to smooth streamtubes. Default is None.
    lookup_colormap : vtkLookupTable
        Add a default lookup table to the colormap. Default is None which calls
        :func:`dipy.viz.actor.colormap_lookup_table`.

    Examples
    --------
    >>> import numpy as np
    >>> from dipy.viz import actor, window
    >>> ren = window.Renderer()
    >>> lines = [np.random.rand(10, 3), np.random.rand(20, 3)]
    >>> colors = np.random.rand(2, 3)
    >>> c = actor.streamtube(lines, colors)
    >>> ren.add(c)
    >>> #window.show(ren)

    Notes
    -----
    Streamtubes can be heavy on GPU when loading many streamlines and
    therefore, you may experience slow rendering time depending on system GPU.
    A solution to this problem is to reduce the number of points in each
    streamline. In Dipy we provide an algorithm that will reduce the number of
    points on the straighter parts of the streamline but keep more points on
    the curvier parts. This can be used in the following way::

        from dipy.tracking.distances import approx_polygon_track
        lines = [approx_polygon_track(line, 0.2) for line in lines]

    Alternatively we suggest using the ``line`` actor which is much more
    efficient.

    See Also
    --------
    :func:``dipy.viz.actor.line``
    """
    # Poly data with lines and colors
    poly_data, is_colormap = lines_to_vtk_polydata(lines, colors)
    next_input = poly_data

    # Set Normals
    poly_normals = set_input(vtk.vtkPolyDataNormals(), next_input)
    poly_normals.ComputeCellNormalsOn()
    poly_normals.ComputePointNormalsOn()
    poly_normals.ConsistencyOn()
    poly_normals.AutoOrientNormalsOn()
    poly_normals.Update()
    next_input = poly_normals.GetOutputPort()

    # Spline interpolation
    if (spline_subdiv is not None) and (spline_subdiv > 0):
        spline_filter = set_input(vtk.vtkSplineFilter(), next_input)
        spline_filter.SetSubdivideToSpecified()
        spline_filter.SetNumberOfSubdivisions(spline_subdiv)
        spline_filter.Update()
        next_input = spline_filter.GetOutputPort()

    # Add thickness to the resulting lines
    tube_filter = set_input(vtk.vtkTubeFilter(), next_input)
    tube_filter.SetNumberOfSides(tube_sides)
    tube_filter.SetRadius(linewidth)
    # TODO using the line above we will be able to visualize
    # streamtubes of varying radius
    # tube_filter.SetVaryRadiusToVaryRadiusByScalar()
    tube_filter.CappingOn()
    tube_filter.Update()
    next_input = tube_filter.GetOutputPort()

    # Poly mapper
    poly_mapper = set_input(vtk.vtkPolyDataMapper(), next_input)
    poly_mapper.ScalarVisibilityOn()
    poly_mapper.SetScalarModeToUsePointFieldData()
    poly_mapper.SelectColorArray("Colors")
    poly_mapper.GlobalImmediateModeRenderingOn()
    poly_mapper.Update()

    # Color Scale with a lookup table
    if is_colormap:
        if lookup_colormap is None:
            lookup_colormap = colormap_lookup_table()
        poly_mapper.SetLookupTable(lookup_colormap)
        poly_mapper.UseLookupTableScalarRangeOn()
        poly_mapper.Update()

    # Set Actor
    if lod:
        actor = vtk.vtkLODActor()
        actor.SetNumberOfCloudPoints(lod_points)
        actor.GetProperty().SetPointSize(lod_points_size)
    else:
        actor = vtk.vtkActor()

    actor.SetMapper(poly_mapper)
    actor.GetProperty().SetAmbient(0.1)
    actor.GetProperty().SetDiffuse(0.15)
    actor.GetProperty().SetSpecular(0.05)
    actor.GetProperty().SetSpecularPower(6)
    actor.GetProperty().SetInterpolationToPhong()
    actor.GetProperty().BackfaceCullingOn()
    actor.GetProperty().SetOpacity(opacity)

    return actor
Example #6
0
def line(lines,
         colors=None,
         opacity=1,
         linewidth=1,
         spline_subdiv=None,
         lod=True,
         lod_points=10**4,
         lod_points_size=3,
         lookup_colormap=None):
    """ Create an actor for one or more lines.

    Parameters
    ------------
    lines :  list of arrays

    colors : array (N, 3), list of arrays, tuple (3,), array (K,), None
        If None then a standard orientation colormap is used for every line.
        If one tuple of color is used. Then all streamlines will have the same
        colour.
        If an array (N, 3) is given, where N is equal to the number of lines.
        Then every line is coloured with a different RGB color.
        If a list of RGB arrays is given then every point of every line takes
        a different color.
        If an array (K, ) is given, where K is the number of points of all
        lines then these are considered as the values to be used by the
        colormap.
        If an array (L, ) is given, where L is the number of streamlines then
        these are considered as the values to be used by the colormap per
        streamline.
        If an array (X, Y, Z) or (X, Y, Z, 3) is given then the values for the
        colormap are interpolated automatically using trilinear interpolation.

    opacity : float, optional
        Default is 1.

    linewidth : float, optional
        Line thickness. Default is 1.
    spline_subdiv : int, optional
        Number of splines subdivision to smooth streamtubes. Default is None
        which means no subdivision.
    lod : bool
        Use vtkLODActor(level of detail) rather than vtkActor. Default is True.
        Level of detail actors do not render the full geometry when the
        frame rate is low.
    lod_points : int
        Number of points to be used when LOD is in effect. Default is 10000.
    lod_points_size : int
        Size of points when lod is in effect. Default is 3.
    lookup_colormap : bool, optional
        Add a default lookup table to the colormap. Default is None which calls
        :func:`dipy.viz.actor.colormap_lookup_table`.

    Returns
    ----------
    v : vtkActor or vtkLODActor object
        Line.

    Examples
    ----------
    >>> from dipy.viz import actor, window
    >>> ren = window.Renderer()
    >>> lines = [np.random.rand(10, 3), np.random.rand(20, 3)]
    >>> colors = np.random.rand(2, 3)
    >>> c = actor.line(lines, colors)
    >>> ren.add(c)
    >>> #window.show(ren)
    """
    # Poly data with lines and colors
    poly_data, is_colormap = lines_to_vtk_polydata(lines, colors)
    next_input = poly_data

    # use spline interpolation
    if (spline_subdiv is not None) and (spline_subdiv > 0):
        spline_filter = set_input(vtk.vtkSplineFilter(), next_input)
        spline_filter.SetSubdivideToSpecified()
        spline_filter.SetNumberOfSubdivisions(spline_subdiv)
        spline_filter.Update()
        next_input = spline_filter.GetOutputPort()

    poly_mapper = set_input(vtk.vtkPolyDataMapper(), next_input)
    poly_mapper.ScalarVisibilityOn()
    poly_mapper.SetScalarModeToUsePointFieldData()
    poly_mapper.SelectColorArray("Colors")
    poly_mapper.Update()

    # Color Scale with a lookup table
    if is_colormap:

        if lookup_colormap is None:
            lookup_colormap = colormap_lookup_table()

        poly_mapper.SetLookupTable(lookup_colormap)
        poly_mapper.UseLookupTableScalarRangeOn()
        poly_mapper.Update()

    # Set Actor
    if lod:
        actor = vtk.vtkLODActor()
        actor.SetNumberOfCloudPoints(lod_points)
        actor.GetProperty().SetPointSize(lod_points_size)
    else:
        actor = vtk.vtkActor()

    # actor = vtk.vtkActor()
    actor.SetMapper(poly_mapper)
    actor.GetProperty().SetLineWidth(linewidth)
    actor.GetProperty().SetOpacity(opacity)

    return actor
Example #7
0
def slicer(data,
           affine=None,
           value_range=None,
           opacity=1.,
           lookup_colormap=None,
           interpolation='linear'):
    """ Cuts 3D scalar or rgb volumes into 2D images

    Parameters
    ----------
    data : array, shape (X, Y, Z) or (X, Y, Z, 3)
        A grayscale or rgb 4D volume as a numpy array.
    affine : array, shape (4, 4)
        Grid to space (usually RAS 1mm) transformation matrix. Default is None.
        If None then the identity matrix is used.
    value_range : None or tuple (2,)
        If None then the values will be interpolated from (data.min(),
        data.max()) to (0, 255). Otherwise from (value_range[0],
        value_range[1]) to (0, 255).
    opacity : float
        Opacity of 0 means completely transparent and 1 completely visible.
    lookup_colormap : vtkLookupTable
        If None (default) then a grayscale map is created.
    interpolation : string
        If 'linear' (default) then linear interpolation is used on the final
        texture mapping. If 'nearest' then nearest neighbor interpolation is
        used on the final texture mapping.

    Returns
    -------
    image_actor : ImageActor
        An object that is capable of displaying different parts of the volume
        as slices. The key method of this object is ``display_extent`` where
        one can input grid coordinates and display the slice in space (or grid)
        coordinates as calculated by the affine parameter.

    """
    if data.ndim != 3:
        if data.ndim == 4:
            if data.shape[3] != 3:
                raise ValueError('Only RGB 3D arrays are currently supported.')
            else:
                nb_components = 3
        else:
            raise ValueError('Only 3D arrays are currently supported.')
    else:
        nb_components = 1

    if value_range is None:
        vol = np.interp(data, xp=[data.min(), data.max()], fp=[0, 255])
    else:
        vol = np.interp(data, xp=[value_range[0], value_range[1]], fp=[0, 255])
    vol = vol.astype('uint8')

    im = vtk.vtkImageData()
    if major_version <= 5:
        im.SetScalarTypeToUnsignedChar()
    I, J, K = vol.shape[:3]
    im.SetDimensions(I, J, K)
    voxsz = (1., 1., 1.)
    # im.SetOrigin(0,0,0)
    im.SetSpacing(voxsz[2], voxsz[0], voxsz[1])
    if major_version <= 5:
        im.AllocateScalars()
        im.SetNumberOfScalarComponents(nb_components)
    else:
        im.AllocateScalars(vtk.VTK_UNSIGNED_CHAR, nb_components)

    # copy data
    # what I do below is the same as what is commented here but much faster
    # for index in ndindex(vol.shape):
    #     i, j, k = index
    #     im.SetScalarComponentFromFloat(i, j, k, 0, vol[i, j, k])
    vol = np.swapaxes(vol, 0, 2)
    vol = np.ascontiguousarray(vol)

    if nb_components == 1:
        vol = vol.ravel()
    else:
        vol = np.reshape(vol, [np.prod(vol.shape[:3]), vol.shape[3]])

    uchar_array = numpy_support.numpy_to_vtk(vol, deep=0)
    im.GetPointData().SetScalars(uchar_array)

    if affine is None:
        affine = np.eye(4)

    # Set the transform (identity if none given)
    transform = vtk.vtkTransform()
    transform_matrix = vtk.vtkMatrix4x4()
    transform_matrix.DeepCopy(
        (affine[0][0], affine[0][1], affine[0][2], affine[0][3], affine[1][0],
         affine[1][1], affine[1][2], affine[1][3], affine[2][0], affine[2][1],
         affine[2][2], affine[2][3], affine[3][0], affine[3][1], affine[3][2],
         affine[3][3]))
    transform.SetMatrix(transform_matrix)
    transform.Inverse()

    # Set the reslicing
    image_resliced = vtk.vtkImageReslice()
    set_input(image_resliced, im)
    image_resliced.SetResliceTransform(transform)
    image_resliced.AutoCropOutputOn()

    # Adding this will allow to support anisotropic voxels
    # and also gives the opportunity to slice per voxel coordinates

    RZS = affine[:3, :3]
    zooms = np.sqrt(np.sum(RZS * RZS, axis=0))
    image_resliced.SetOutputSpacing(*zooms)

    image_resliced.SetInterpolationModeToLinear()
    image_resliced.Update()

    if nb_components == 1:
        if lookup_colormap is None:
            # Create a black/white lookup table.
            lut = colormap_lookup_table((0, 255), (0, 0), (0, 0), (0, 1))
        else:
            lut = lookup_colormap

    x1, x2, y1, y2, z1, z2 = im.GetExtent()
    ex1, ex2, ey1, ey2, ez1, ez2 = image_resliced.GetOutput().GetExtent()

    class ImageActor(vtk.vtkImageActor):
        def input_connection(self, output):
            if vtk.VTK_MAJOR_VERSION <= 5:
                self.SetInput(output.GetOutput())
            else:
                self.GetMapper().SetInputConnection(output.GetOutputPort())
            self.output = output
            self.shape = (ex2 + 1, ey2 + 1, ez2 + 1)

        def display_extent(self, x1, x2, y1, y2, z1, z2):
            self.SetDisplayExtent(x1, x2, y1, y2, z1, z2)
            if vtk.VTK_MAJOR_VERSION > 5:
                self.Update()

        def display(self, x=None, y=None, z=None):
            if x is None and y is None and z is None:
                self.display_extent(ex1, ex2, ey1, ey2, ez2 // 2, ez2 // 2)
            if x is not None:
                self.display_extent(x, x, ey1, ey2, ez1, ez2)
            if y is not None:
                self.display_extent(ex1, ex2, y, y, ez1, ez2)
            if z is not None:
                self.display_extent(ex1, ex2, ey1, ey2, z, z)

        def opacity(self, value):
            if vtk.VTK_MAJOR_VERSION <= 5:
                self.SetOpacity(value)
            else:
                self.GetProperty().SetOpacity(value)

        def copy(self):
            im_actor = ImageActor()
            im_actor.input_connection(self.output)
            im_actor.SetDisplayExtent(*self.GetDisplayExtent())
            im_actor.opacity(opacity)
            if interpolation == 'nearest':
                im_actor.SetInterpolate(False)
            else:
                im_actor.SetInterpolate(True)
            if major_version >= 6:
                im_actor.GetMapper().BorderOn()
            return im_actor

    image_actor = ImageActor()
    if nb_components == 1:
        plane_colors = vtk.vtkImageMapToColors()
        plane_colors.SetLookupTable(lut)
        plane_colors.SetInputConnection(image_resliced.GetOutputPort())
        plane_colors.Update()
        image_actor.input_connection(plane_colors)
    else:
        image_actor.input_connection(image_resliced)
    image_actor.display()
    image_actor.opacity(opacity)

    if interpolation == 'nearest':
        image_actor.SetInterpolate(False)
    else:
        image_actor.SetInterpolate(True)

    if major_version >= 6:
        image_actor.GetMapper().BorderOn()

    return image_actor
Example #8
0
def streamtube(lines,
               colors=None,
               opacity=1,
               linewidth=0.1,
               tube_sides=9,
               lod=True,
               lod_points=10**4,
               lod_points_size=3,
               spline_subdiv=None,
               lookup_colormap=None):
    """ Uses streamtubes to visualize polylines

    Parameters
    ----------
    lines : list
        list of N curves represented as 2D ndarrays

    colors : array (N, 3), list of arrays, tuple (3,), array (K,), None
        If None then a standard orientation colormap is used for every line.
        If one tuple of color is used. Then all streamlines will have the same
        colour.
        If an array (N, 3) is given, where N is equal to the number of lines.
        Then every line is coloured with a different RGB color.
        If a list of RGB arrays is given then every point of every line takes
        a different color.
        If an array (K, ) is given, where K is the number of points of all
        lines then these are considered as the values to be used by the
        colormap.
        If an array (L, ) is given, where L is the number of streamlines then
        these are considered as the values to be used by the colormap per
        streamline.
        If an array (X, Y, Z) or (X, Y, Z, 3) is given then the values for the
        colormap are interpolated automatically using trilinear interpolation.

    opacity : float
        Default is 1.
    linewidth : float
        Default is 0.01.
    tube_sides : int
        Default is 9.
    lod : bool
        Use vtkLODActor(level of detail) rather than vtkActor. Default is True.
        Level of detail actors do not render the full geometry when the
        frame rate is low.
    lod_points : int
        Number of points to be used when LOD is in effect. Default is 10000.
    lod_points_size : int
        Size of points when lod is in effect. Default is 3.
    spline_subdiv : int
        Number of splines subdivision to smooth streamtubes. Default is None.
    lookup_colormap : vtkLookupTable
        Add a default lookup table to the colormap. Default is None which calls
        :func:`dipy.viz.actor.colormap_lookup_table`.

    Examples
    --------
    >>> import numpy as np
    >>> from dipy.viz import actor, window
    >>> ren = window.Renderer()
    >>> lines = [np.random.rand(10, 3), np.random.rand(20, 3)]
    >>> colors = np.random.rand(2, 3)
    >>> c = actor.streamtube(lines, colors)
    >>> ren.add(c)
    >>> #window.show(ren)

    Notes
    -----
    Streamtubes can be heavy on GPU when loading many streamlines and
    therefore, you may experience slow rendering time depending on system GPU.
    A solution to this problem is to reduce the number of points in each
    streamline. In Dipy we provide an algorithm that will reduce the number of
    points on the straighter parts of the streamline but keep more points on
    the curvier parts. This can be used in the following way::

        from dipy.tracking.distances import approx_polygon_track
        lines = [approx_polygon_track(line, 0.2) for line in lines]

    Alternatively we suggest using the ``line`` actor which is much more
    efficient.

    See Also
    --------
    :func:`dipy.viz.actor.line`
    """
    # Poly data with lines and colors
    poly_data, is_colormap = lines_to_vtk_polydata(lines, colors)
    next_input = poly_data

    # Set Normals
    poly_normals = set_input(vtk.vtkPolyDataNormals(), next_input)
    poly_normals.ComputeCellNormalsOn()
    poly_normals.ComputePointNormalsOn()
    poly_normals.ConsistencyOn()
    poly_normals.AutoOrientNormalsOn()
    poly_normals.Update()
    next_input = poly_normals.GetOutputPort()

    # Spline interpolation
    if (spline_subdiv is not None) and (spline_subdiv > 0):
        spline_filter = set_input(vtk.vtkSplineFilter(), next_input)
        spline_filter.SetSubdivideToSpecified()
        spline_filter.SetNumberOfSubdivisions(spline_subdiv)
        spline_filter.Update()
        next_input = spline_filter.GetOutputPort()

    # Add thickness to the resulting lines
    tube_filter = set_input(vtk.vtkTubeFilter(), next_input)
    tube_filter.SetNumberOfSides(tube_sides)
    tube_filter.SetRadius(linewidth)
    # TODO using the line above we will be able to visualize
    # streamtubes of varying radius
    # tube_filter.SetVaryRadiusToVaryRadiusByScalar()
    tube_filter.CappingOn()
    tube_filter.Update()
    next_input = tube_filter.GetOutputPort()

    # Poly mapper
    poly_mapper = set_input(vtk.vtkPolyDataMapper(), next_input)
    poly_mapper.ScalarVisibilityOn()
    poly_mapper.SetScalarModeToUsePointFieldData()
    poly_mapper.SelectColorArray("Colors")
    poly_mapper.GlobalImmediateModeRenderingOn()
    poly_mapper.Update()

    # Color Scale with a lookup table
    if is_colormap:
        if lookup_colormap is None:
            lookup_colormap = colormap_lookup_table()
        poly_mapper.SetLookupTable(lookup_colormap)
        poly_mapper.UseLookupTableScalarRangeOn()
        poly_mapper.Update()

    # Set Actor
    if lod:
        actor = vtk.vtkLODActor()
        actor.SetNumberOfCloudPoints(lod_points)
        actor.GetProperty().SetPointSize(lod_points_size)
    else:
        actor = vtk.vtkActor()

    actor.SetMapper(poly_mapper)
    actor.GetProperty().SetAmbient(0.1)
    actor.GetProperty().SetDiffuse(0.15)
    actor.GetProperty().SetSpecular(0.05)
    actor.GetProperty().SetSpecularPower(6)
    actor.GetProperty().SetInterpolationToPhong()
    actor.GetProperty().BackfaceCullingOn()
    actor.GetProperty().SetOpacity(opacity)

    return actor