Example #1
0
def label_streamlines(streamlines, labels, labels_Value, affine, hdr, f_name,
                      data_path):

    cc_slice = labels == labels_Value
    cc_streamlines = utils.target(streamlines, labels, affine=affine)
    cc_streamlines = list(cc_streamlines)

    other_streamlines = utils.target(streamlines,
                                     cc_slice,
                                     affine=affine,
                                     include=False)
    other_streamlines = list(other_streamlines)
    assert len(other_streamlines) + len(cc_streamlines) == len(streamlines)

    print("num of roi steamlines is %d", len(cc_streamlines))

    # Make display objects
    color = line_colors(cc_streamlines)
    cc_streamlines_actor = fvtk.line(cc_streamlines,
                                     line_colors(cc_streamlines))
    cc_ROI_actor = fvtk.contour(cc_slice,
                                levels=[1],
                                colors=[(1., 1., 0.)],
                                opacities=[1.])

    # Add display objects to canvas
    r = fvtk.ren()
    fvtk.add(r, cc_streamlines_actor)
    fvtk.add(r, cc_ROI_actor)

    # Save figures
    fvtk.record(r, n_frames=1, out_path=f_name + '_roi.png', size=(800, 800))
    fvtk.camera(r, [-1, 0, 0], [0, 0, 0], viewup=[0, 0, 1])
    fvtk.record(r, n_frames=1, out_path=f_name + '_roi.png', size=(800, 800))
    """"""

    csd_streamlines_trk = ((sl, None, None) for sl in cc_streamlines)
    csd_sl_fname = f_name + '_roi_streamline.trk'
    nib.trackvis.write(csd_sl_fname,
                       csd_streamlines_trk,
                       hdr,
                       points_space='voxel')
    #nib.save(nib.Nifti1Image(FA, img.get_affine()), 'FA_map2.nii.gz')
    print('Saving "_roi_streamline.trk" sucessful.')

    import tractconverter as tc
    input_format = tc.detect_format(csd_sl_fname)
    input = input_format(csd_sl_fname)
    output = tc.FORMATS['vtk'].create(csd_sl_fname + ".vtk", input.hdr)
    tc.convert(input, output)

    return cc_streamlines
def label_streamlines(streamlines,labels,labels_Value,affine,hdr,f_name,data_path):  
      
    cc_slice=labels==labels_Value
    cc_streamlines = utils.target(streamlines, labels, affine=affine)
    cc_streamlines = list(cc_streamlines)

    other_streamlines = utils.target(streamlines, cc_slice, affine=affine,
                                 include=False)
    other_streamlines = list(other_streamlines)
    assert len(other_streamlines) + len(cc_streamlines) == len(streamlines)
    

    print ("num of roi steamlines is %d",len(cc_streamlines))
    

    # Make display objects
    color = line_colors(cc_streamlines)
    cc_streamlines_actor = fvtk.line(cc_streamlines, line_colors(cc_streamlines))
    cc_ROI_actor = fvtk.contour(cc_slice, levels=[1], colors=[(1., 1., 0.)],
                            opacities=[1.])

    # Add display objects to canvas
    r = fvtk.ren()
    fvtk.add(r, cc_streamlines_actor)
    fvtk.add(r, cc_ROI_actor)

    # Save figures
    fvtk.record(r, n_frames=1, out_path=f_name+'_roi.png',
            size=(800, 800))
    fvtk.camera(r, [-1, 0, 0], [0, 0, 0], viewup=[0, 0, 1])
    fvtk.record(r, n_frames=1, out_path=f_name+'_roi.png',
            size=(800, 800))
    """"""

    csd_streamlines_trk = ((sl, None, None) for sl in cc_streamlines)
    csd_sl_fname = f_name+'_roi_streamline.trk'
    nib.trackvis.write(csd_sl_fname, csd_streamlines_trk, hdr, points_space='voxel')
    #nib.save(nib.Nifti1Image(FA, img.get_affine()), 'FA_map2.nii.gz')
    print('Saving "_roi_streamline.trk" sucessful.')

    import tractconverter as tc
    input_format=tc.detect_format(csd_sl_fname)
    input=input_format(csd_sl_fname)
    output=tc.FORMATS['vtk'].create(csd_sl_fname+".vtk",input.hdr)
    tc.convert(input,output)
    
    return cc_streamlines
Example #3
0
def createVtkPng(source, anatomical, roi):
    import vtk
    from dipy.viz.colormap import line_colors
    from dipy.viz import fvtk

    target = source.replace(".trk",".png")
    roiImage= nibabel.load(roi)
    anatomicalImage = nibabel.load(anatomical)

    sourceImage = [s[0] for s in nibabel.trackvis.read(source, points_space='voxel')[0]]
    try:
        sourceActor = fvtk.streamtube(sourceImage, line_colors(sourceImage))

        roiActor = fvtk.contour(roiImage.get_data(), levels=[1], colors=[(1., 1., 0.)], opacities=[1.])
        anatomicalActor = fvtk.slicer(anatomicalImage.get_data(),
                                  voxsz=(1.0, 1.0, 1.0),
                                  plane_i=None,
                                  plane_j=None,
                                  plane_k=[65],
                                  outline=False)
    except ValueError:
        return False
        
    sourceActor.RotateX(-70)
    sourceActor.RotateY(2.5)
    sourceActor.RotateZ(185)

    roiActor.RotateX(-70)
    roiActor.RotateY(2.5)
    roiActor.RotateZ(185)

    anatomicalActor.RotateX(-70)
    anatomicalActor.RotateY(2.5)
    anatomicalActor.RotateZ(185)

    ren = fvtk.ren()
    fvtk.add(ren, sourceActor)
    fvtk.add(ren, roiActor)
    fvtk.add(ren, anatomicalActor)
    fvtk.record(ren, out_path=target, size=(1200, 1200), n_frames=1, verbose=True, cam_pos=(90.03, 118.33, 700.59))
    return target
Example #4
0
other_streamlines = list(other_streamlines)
assert len(other_streamlines) + len(cc_streamlines) == len(streamlines)
"""
We can use some of dipy's visualization tools to display the ROI we targeted
above and all the streamlines that pass though that ROI. The ROI is the yellow
region near the center of the axial image.
"""

from dipy.viz import fvtk
from dipy.viz.colormap import line_colors

# Make display objects
color = line_colors(cc_streamlines)
cc_streamlines_actor = fvtk.line(cc_streamlines, line_colors(cc_streamlines))
cc_ROI_actor = fvtk.contour(cc_slice,
                            levels=[1],
                            colors=[(1., 1., 0.)],
                            opacities=[1.])

vol_actor = fvtk.slicer(t1_data)

vol_actor.display(40, None, None)
vol_actor2 = vol_actor.copy()
vol_actor2.display(None, None, 35)

# Add display objects to canvas
r = fvtk.ren()
fvtk.add(r, vol_actor)
fvtk.add(r, vol_actor2)
fvtk.add(r, cc_streamlines_actor)
fvtk.add(r, cc_ROI_actor)
Example #5
0
other_streamlines = list(other_streamlines)
assert len(other_streamlines) + len(cc_streamlines) == len(streamlines)

"""
We can use some of dipy's visualization tools to display the ROI we targeted
above and all the streamlines that pass though that ROI. The ROI is the yellow
region near the center of the axial image.
"""

from dipy.viz import fvtk
from dipy.viz.colormap import line_colors

# Make display objects
color = line_colors(cc_streamlines)
cc_streamlines_actor = fvtk.line(cc_streamlines, line_colors(cc_streamlines))
cc_ROI_actor = fvtk.contour(cc_slice, levels=[1], colors=[(1., 1., 0.)],
                            opacities=[1.])

# Add display objects to canvas
r = fvtk.ren()
fvtk.add(r, cc_streamlines_actor)
fvtk.add(r, cc_ROI_actor)

# Save figures
fvtk.record(r, n_frames=1, out_path='corpuscallosum_axial.png',
            size=(800, 800))
fvtk.camera(r, [-1, 0, 0], [0, 0, 0], viewup=[0, 0, 1])
fvtk.record(r, n_frames=1, out_path='corpuscallosum_sagittal.png',
            size=(800, 800))

"""
.. figure:: corpuscallosum_axial.png