data_sigma = np.std(data_matrix_arrays, axis=0) data_2sigma = 2 * data_sigma #make matrix of all processed arrays relevant_arrays = [ time_array, default_array, data_mean, data_median, data_sigma, data_2sigma ] all_relevant_arrays = np.zeros((len(relevant_arrays), num_timepoints)) for i in range(len(relevant_arrays)): all_relevant_arrays[i, :] = relevant_arrays[i] #save numpy matrix in folder with same filename as data-files and new suffix filename_stddev = input_datafolder + "/" + data_filename + "_stddev.npy" np.save(filename_stddev, all_relevant_arrays) if raw_input("Would you like to store results in /hume/? y/n") == "y": result_folder = folder.hume_folder() + "results/" filename_stddev = result_folder + data_filename + "_stddev%d.npy" % input_index np.save(filename_stddev, all_relevant_arrays) #add comment regarding analysis in README with open(input_datafolder + '/README.md', 'a') as readmefile: readmefile.write('\n') readmefile.write("Analyzed " + input_datafolder + '\n') readmefile.write( "file consists of one %s array with the following arrays:" % (all_relevant_arrays.shape, ) + '\n') readmefile.write("* Default array (No fudge factor) for " + array_name + '\n') readmefile.write("* Mean value for " + array_name + '\n') readmefile.write("* Median value for " + array_name + '\n') readmefile.write("* one sigma value for " + array_name + '\n')
""" This script is for picking an experiment on the stornext folder, get all the adequate results and write them to the results-folder in \thesis\ """ import os from save_results import save_results from directory_master import Foldermap folder = Foldermap() stornext_folder = folder.stornext_folder() hume_folder = folder.hume_folder() results_folder = "latex/thesis/results/" #direction to thesis-results-folder from /Master/ if __name__ == '__main__': #which experiment? inventory = dict(enumerate(os.listdir(stornext_folder))) question = "Choose the index of the appropriate experiment?\n%s" % ( inventory) response = int(raw_input(question)) experiment = inventory[response] get_directory = stornext_folder + experiment + "/" save_directory = hume_folder + results_folder + experiment + "/" #which arrays? loa_array_strings = [] #nb_nsm, rate_nsm loa_array_strings.append("num_nsm") #elem & iso yield+ism iso_list = ["Re-185", "Re-187", "Os-187", "Os-188", "Os-186", "W-184"] elem_list = ["Re", "Os", "W"]
""" Go through /stornext/-directories and plot various data-sets with mean + regions and such. Decide which data is to be stored in /results/ """ from directory_master import Foldermap from plot_data_files import plot_all_mean_sigma_extrema, plot_all_time_hist import matplotlib.pyplot as pl #Get relevant directory-names for uio-systems folder_instance = Foldermap() dir_stornext = folder_instance.stornext_folder() dir_hume = folder_instance.hume_folder() #decide on variables to plot! loa_elem = ["Re", "Os"] loa_re_isos = ["Re-187", "Re-185"] loa_os_isos = ["Os-187", "Os-188"] loa_ism_isos = ["ism_iso_" + iso for iso in loa_re_isos + loa_os_isos] loa_ism_elem = ["ism_elem_" + elem for elem in loa_elem] loa_yield_isos = ["yield_" + iso for iso in loa_re_isos + loa_os_isos] loa_array_strings = ["num_nsm", "m_locked"] + \ loa_ism_elem + \ loa_ism_isos + \ loa_yield_isos if __name__ == '__main__': print "Plotting data for the following arrays:" print loa_array_strings dir_experiment = dir_stornext + "MCExperiment1/"