Example #1
0
    def is_inside(self, pts, location_type="nodes", **kwargs):
        """
        Determines if a set of points are inside a mesh.

        :param numpy.ndarray pts: Location of points to test
        :rtype: numpy.ndarray
        :return: inside, numpy array of booleans
        """
        if "locType" in kwargs:
            warnings.warn(
                "The locType keyword argument has been deprecated, please use location_type. "
                "This will be removed in discretize 1.0.0",
                DeprecationWarning,
            )
            location_type = kwargs["locType"]
        pts = as_array_n_by_dim(pts, self.dim)

        tensors = self.get_tensor(location_type)

        if location_type[0].lower() == "n" and self._meshType == "CYL":
            # NOTE: for a CYL mesh we add a node to check if we are inside in
            # the radial direction!
            tensors[0] = np.r_[0.0, tensors[0]]
            tensors[1] = np.r_[tensors[1], 2.0 * np.pi]

        inside = np.ones(pts.shape[0], dtype=bool)
        for i, tensor in enumerate(tensors):
            TOL = np.diff(tensor).min() * 1.0e-10
            inside = (inside
                      & (pts[:, i] >= tensor.min() - TOL)
                      & (pts[:, i] <= tensor.max() + TOL))
        return inside
Example #2
0
    def is_inside(self, pts, location_type="nodes", **kwargs):
        """Determine which points lie within the mesh

        For an arbitrary set of points, **is_indside** returns a
        boolean array identifying which points lie within the mesh.

        Parameters
        ----------
        pts : (n_pts, dim) numpy.ndarray
            Locations of input points. Must have same dimension as the mesh.
        location_type : str, optional
            Use *N* to determine points lying within the cluster of mesh
            nodes. Use *CC* to determine points lying within the cluster
            of mesh cell centers.

        Returns
        -------
        (n_pts) numpy.ndarray of bool
            Boolean array identifying points which lie within the mesh

        """
        if "locType" in kwargs:
            warnings.warn(
                "The locType keyword argument has been deprecated, please use location_type. "
                "This will be removed in discretize 1.0.0",
                DeprecationWarning,
            )
            location_type = kwargs["locType"]
        pts = as_array_n_by_dim(pts, self.dim)

        tensors = self.get_tensor(location_type)

        if location_type[0].lower() == "n" and self._meshType == "CYL":
            # NOTE: for a CYL mesh we add a node to check if we are inside in
            # the radial direction!
            tensors[0] = np.r_[0.0, tensors[0]]
            tensors[1] = np.r_[tensors[1], 2.0 * np.pi]

        inside = np.ones(pts.shape[0], dtype=bool)
        for i, tensor in enumerate(tensors):
            TOL = np.diff(tensor).min() * 1.0e-10
            inside = (
                inside
                & (pts[:, i] >= tensor.min() - TOL)
                & (pts[:, i] <= tensor.max() + TOL)
            )
        return inside
Example #3
0
    def point2index(self, locs):
        """Finds cells that contain the given points.
        Returns an array of index values of the cells that contain the given
        points

        Parameters
        ----------
        locs: array_like of shape (N, dim)
            points to search for the location of

        Returns
        -------
        numpy.array of integers of length(N)
            Cell indices that contain the points
        """
        locs = as_array_n_by_dim(locs, self.dim)
        inds = self._get_containing_cell_indexes(locs)
        return inds
Example #4
0
    def get_interpolation_matrix(
        self, locs, location_type="CC", zeros_outside=False, **kwargs
    ):
        if "locType" in kwargs:
            warnings.warn(
                "The locType keyword argument has been deprecated, please use location_type. "
                "This will be removed in discretize 1.0.0",
                FutureWarning,
            )
            location_type = kwargs["locType"]
        if "zerosOutside" in kwargs:
            warnings.warn(
                "The zerosOutside keyword argument has been deprecated, please use zeros_outside. "
                "This will be removed in discretize 1.0.0",
                FutureWarning,
            )
            zeros_outside = kwargs["zerosOutside"]
        locs = as_array_n_by_dim(locs, self.dim)
        if location_type not in ["N", "CC", "Ex", "Ey", "Ez", "Fx", "Fy", "Fz"]:
            raise Exception(
                "location_type must be one of N, CC, Ex, Ey, Ez, Fx, Fy, or Fz"
            )

        if self.dim == 2 and location_type in ["Ez", "Fz"]:
            raise Exception("Unable to interpolate from Z edges/face in 2D")

        locs = np.require(np.atleast_2d(locs), dtype=np.float64, requirements="C")

        if location_type == "N":
            Av = self._getNodeIntMat(locs, zeros_outside)
        elif location_type in ["Ex", "Ey", "Ez"]:
            Av = self._getEdgeIntMat(locs, zeros_outside, location_type[1])
        elif location_type in ["Fx", "Fy", "Fz"]:
            Av = self._getFaceIntMat(locs, zeros_outside, location_type[1])
        elif location_type in ["CC"]:
            Av = self._getCellIntMat(locs, zeros_outside)
        return Av
Example #5
0
    def get_interpolation_matrix(
        self, locs, location_type="CC", zeros_outside=False, **kwargs
    ):
        """Produces interpolation matrix

        Parameters
        ----------
        loc : numpy.ndarray
            Location of points to interpolate to

        location_type: str
            What to interpolate

            location_type can be::

                'Ex'    -> x-component of field defined on edges
                'Ey'    -> y-component of field defined on edges
                'Ez'    -> z-component of field defined on edges
                'Fx'    -> x-component of field defined on faces
                'Fy'    -> y-component of field defined on faces
                'Fz'    -> z-component of field defined on faces
                'N'     -> scalar field defined on nodes
                'CC'    -> scalar field defined on cell centers

        Returns
        -------
        scipy.sparse.csr_matrix
            M, the interpolation matrix

        """
        if "locType" in kwargs:
            warnings.warn(
                "The locType keyword argument has been deprecated, please use location_type. "
                "This will be removed in discretize 1.0.0",
                DeprecationWarning,
            )
            location_type = kwargs["locType"]
        if "zerosOutside" in kwargs:
            warnings.warn(
                "The zerosOutside keyword argument has been deprecated, please use zeros_outside. "
                "This will be removed in discretize 1.0.0",
                DeprecationWarning,
            )
            zeros_outside = kwargs["zerosOutside"]
        locs = as_array_n_by_dim(locs, self.dim)
        if location_type not in ["N", "CC", "Ex", "Ey", "Ez", "Fx", "Fy", "Fz"]:
            raise Exception("location_type must be one of N, CC, Ex, Ey, Ez, Fx, Fy, or Fz")

        if self.dim == 2 and location_type in ["Ez", "Fz"]:
            raise Exception("Unable to interpolate from Z edges/face in 2D")

        locs = np.require(np.atleast_2d(locs), dtype=np.float64, requirements="C")

        if location_type == "N":
            Av = self._getNodeIntMat(locs, zeros_outside)
        elif location_type in ["Ex", "Ey", "Ez"]:
            Av = self._getEdgeIntMat(locs, zeros_outside, location_type[1])
        elif location_type in ["Fx", "Fy", "Fz"]:
            Av = self._getFaceIntMat(locs, zeros_outside, location_type[1])
        elif location_type in ["CC"]:
            Av = self._getCellIntMat(locs, zeros_outside)
        return Av
Example #6
0
    def _getInterpolationMat(
        self, loc, location_type="cell_centers", zeros_outside=False
    ):
        """Produces interpolation matrix

        Parameters
        ----------
        loc : numpy.ndarray
            Location of points to interpolate to

        location_type: str, optional
            What to interpolate

            location_type can be::

                'Ex', 'edges_x'           -> x-component of field defined on x edges
                'Ey', 'edges_y'           -> y-component of field defined on y edges
                'Ez', 'edges_z'           -> z-component of field defined on z edges
                'Fx', 'faces_x'           -> x-component of field defined on x faces
                'Fy', 'faces_y'           -> y-component of field defined on y faces
                'Fz', 'faces_z'           -> z-component of field defined on z faces
                'N', 'nodes'              -> scalar field defined on nodes
                'CC', 'cell_centers'      -> scalar field defined on cell centers
                'CCVx', 'cell_centers_x'  -> x-component of vector field defined on cell centers
                'CCVy', 'cell_centers_y'  -> y-component of vector field defined on cell centers
                'CCVz', 'cell_centers_z'  -> z-component of vector field defined on cell centers

        Returns
        -------
        scipy.sparse.csr_matrix
            M, the interpolation matrix

        """

        loc = as_array_n_by_dim(loc, self.dim)

        if not zeros_outside:
            if not np.all(self.is_inside(loc)):
                raise ValueError("Points outside of mesh")
        else:
            indZeros = np.logical_not(self.is_inside(loc))
            loc[indZeros, :] = np.array([v.mean() for v in self.get_tensor("CC")])

        location_type = self._parse_location_type(location_type)

        if location_type in [
            "faces_x",
            "faces_y",
            "faces_z",
            "edges_x",
            "edges_y",
            "edges_z",
        ]:
            ind = {"x": 0, "y": 1, "z": 2}[location_type[-1]]
            if self.dim < ind:
                raise ValueError("mesh is not high enough dimension.")
            if "f" in location_type.lower():
                items = (self.nFx, self.nFy, self.nFz)[: self.dim]
            else:
                items = (self.nEx, self.nEy, self.nEz)[: self.dim]
            components = [spzeros(loc.shape[0], n) for n in items]
            components[ind] = interpolation_matrix(loc, *self.get_tensor(location_type))
            # remove any zero blocks (hstack complains)
            components = [comp for comp in components if comp.shape[1] > 0]
            Q = sp.hstack(components)

        elif location_type in ["cell_centers", "nodes"]:
            Q = interpolation_matrix(loc, *self.get_tensor(location_type))

        elif location_type in ["cell_centers_x", "cell_centers_y", "cell_centers_z"]:
            Q = interpolation_matrix(loc, *self.get_tensor("CC"))
            Z = spzeros(loc.shape[0], self.nC)
            if location_type[-1] == "x":
                Q = sp.hstack([Q, Z, Z])
            elif location_type[-1] == "y":
                Q = sp.hstack([Z, Q, Z])
            elif location_type[-1] == "z":
                Q = sp.hstack([Z, Z, Q])

        else:
            raise NotImplementedError(
                "getInterpolationMat: location_type=="
                + location_type
                + " and mesh.dim=="
                + str(self.dim)
            )

        if zeros_outside:
            Q[indZeros, :] = 0

        return Q.tocsr()
Example #7
0
 def point2index(self, locs):
     locs = as_array_n_by_dim(locs, self.dim)
     inds = self._get_containing_cell_indexes(locs)
     return inds