Example #1
0
def test_standardized_forecasts_error():
    # Simple test that standardized forecasts errors are calculated correctly.

    # Just uses a different calculation method on a univariate series.

    # Get the dataset
    true = results_kalman_filter.uc_uni
    data = pd.DataFrame(true['data'],
                        index=pd.date_range('1947-01-01',
                                            '1995-07-01',
                                            freq='QS'),
                        columns=['GDP'])
    data['lgdp'] = np.log(data['GDP'])

    # Fit an ARIMA(1,1,0) to log GDP
    mod = sarimax.SARIMAX(data['lgdp'], order=(1, 1, 0))
    res = mod.fit(disp=-1)

    standardized_forecasts_error = (
        res.filter_results.forecasts_error[0] /
        np.sqrt(res.filter_results.forecasts_error_cov[0, 0]))

    assert_allclose(
        res.filter_results.standardized_forecasts_error[0],
        standardized_forecasts_error,
    )
Example #2
0
    def __init__(self, alternate_timing=True, *args, **kwargs):
        # Dataset
        path = current_path + os.sep + 'results/results_wpi1_ar3_stata.csv'
        self.stata = pd.read_csv(path)
        self.stata.index = pd.date_range(start='1960-01-01',
                                         periods=124,
                                         freq='QS')
        # Matlab comparison
        path = current_path + os.sep + 'results/results_wpi1_missing_ar3_matlab_ssm.csv'
        matlab_names = [
            'a1', 'a2', 'a3', 'detP', 'alphahat1', 'alphahat2', 'alphahat3',
            'detV', 'eps', 'epsvar', 'eta', 'etavar'
        ]
        self.matlab_ssm = pd.read_csv(path, header=None, names=matlab_names)
        # Regression tests data
        path = current_path + os.sep + 'results/results_wpi1_missing_ar3_regression.csv'
        self.regression = pd.read_csv(path)

        # Create missing observations
        self.stata['dwpi'] = self.stata['wpi'].diff()
        self.stata.ix[10:21, 'dwpi'] = np.nan

        self.model = sarimax.SARIMAX(self.stata.ix[1:, 'dwpi'],
                                     order=(3, 0, 0),
                                     hamilton_representation=True,
                                     *args,
                                     **kwargs)
        if alternate_timing:
            self.model.timing_init_filtered = True

        # Parameters from from Stata's sspace MLE estimation
        params = np.r_[.5270715, .0952613, .2580355, .5307459]
        self.results = self.model.smooth(params, return_ssm=True)

        # Calculate the determinant of the covariance matrices (for easy
        # comparison to other languages without having to store 2-dim arrays)
        self.results.det_predicted_state_cov = np.zeros((1, self.model.nobs))
        self.results.det_smoothed_state_cov = np.zeros((1, self.model.nobs))
        for i in range(self.model.nobs):
            self.results.det_predicted_state_cov[0, i] = np.linalg.det(
                self.results.predicted_state_cov[:, :, i])
            self.results.det_smoothed_state_cov[0, i] = np.linalg.det(
                self.results.smoothed_state_cov[:, :, i])

        # Perform simulation smoothing
        n_disturbance_variates = ((self.model.k_endog + self.model.k_posdef) *
                                  self.model.nobs)
        self.sim = self.model.simulation_smoother()
        self.sim.simulate(
            disturbance_variates=np.zeros(n_disturbance_variates),
            initial_state_variates=np.zeros(self.model.k_states))
Example #3
0
def get_dummy_mod(fit=True, pandas=False):
    # This tests time-varying parameters regression when in fact the parameters
    # are not time-varying, and in fact the regression fit is perfect
    endog = np.arange(100)*1.0
    exog = 2*endog

    if pandas:
        index = pd.date_range('1960-01-01', periods=100, freq='MS')
        endog = pd.TimeSeries(endog, index=index)
        exog = pd.TimeSeries(exog, index=index)

    mod = sarimax.SARIMAX(endog, exog=exog, order=(0,0,0), time_varying_regression=True, mle_regression=False)

    if fit:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            res = mod.fit(disp=-1)
    else:
        res = None
    
    return mod, res
Example #4
0
def test_fit_misc():
    true = results_sarimax.wpi1_stationary
    endog = np.diff(true['data'])[1:]

    mod = sarimax.SARIMAX(endog, order=(1,0,1), trend='c')

    # Test optim_hessian={'opg','oim','cs'}
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        res1 = mod.fit(method='ncg', disp=True, optim_hessian='opg')
        res2 = mod.fit(method='ncg', disp=True, optim_hessian='oim')
        res3 = mod.fit(method='ncg', disp=True, optim_hessian='cs')
        assert_raises(NotImplementedError, mod.fit, method='ncg', disp=False, optim_hessian='a')
    # Check that the Hessians broadly result in the same optimum
    assert_allclose(res1.llf, res2.llf, rtol=1e-2)
    assert_allclose(res1.llf, res3.llf, rtol=1e-2)

    # Test return_params=True
    mod, _ = get_dummy_mod(fit=False)
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        res_params = mod.fit(disp=-1, return_params=True)

    assert_almost_equal(res_params, [0,0], 7)
Example #5
0
def test_simulate():
    # Test for simulation of new time-series
    from scipy.signal import lfilter

    # Common parameters
    nsimulations = 10
    sigma2 = 2
    measurement_shocks = np.zeros(nsimulations)
    state_shocks = np.random.normal(scale=sigma2**0.5, size=nsimulations)

    # Random walk model, so simulated series is just the cumulative sum of
    # the shocks
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(nsimulations,
                          measurement_shocks=measurement_shocks,
                          state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[0, np.cumsum(state_shocks)[:-1]]

    assert_allclose(actual, desired)

    # Local level model, so simulated series is just the cumulative sum of
    # the shocks plus the measurement shock
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(nsimulations,
                          measurement_shocks=np.ones(nsimulations),
                          state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[1, np.cumsum(state_shocks)[:-1] + 1]

    assert_allclose(actual, desired)

    # Local level-like model with observation and state intercepts, so
    # simulated series is just the cumulative sum of the shocks minus the state
    # intercept, plus the observation intercept and the measurement shock
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['obs_intercept', 0, 0] = 5.
    mod['design', 0, 0] = 1.
    mod['state_intercept', 0, 0] = -2.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(nsimulations,
                          measurement_shocks=np.ones(nsimulations),
                          state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[1 + 5, np.cumsum(state_shocks - 2)[:-1] + 1 + 5]

    assert_allclose(actual, desired)

    # Model with time-varying observation intercept
    mod = KalmanFilter(k_endog=1, k_states=1, nobs=10)
    mod['obs_intercept'] = (np.arange(10) * 1.).reshape(1, 10)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(nsimulations,
                          measurement_shocks=measurement_shocks,
                          state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[0, np.cumsum(state_shocks)[:-1] + np.arange(1, 10)]

    assert_allclose(actual, desired)

    # Model with time-varying observation intercept, check that error is raised
    # if more simulations are requested than are nobs.
    mod = KalmanFilter(k_endog=1, k_states=1, nobs=10)
    mod['obs_intercept'] = (np.arange(10) * 1.).reshape(1, 10)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.
    assert_raises(ValueError, mod.simulate, nsimulations + 1,
                  measurement_shocks, state_shocks)

    # ARMA(1,1): phi = [0.1], theta = [0.5], sigma^2 = 2
    phi = np.r_[0.1]
    theta = np.r_[0.5]
    mod = sarimax.SARIMAX([0], order=(1, 0, 1))
    mod.update(np.r_[phi, theta, sigma2])

    actual = mod.ssm.simulate(nsimulations,
                              measurement_shocks=measurement_shocks,
                              state_shocks=state_shocks)[0].squeeze()
    desired = lfilter([1, theta], [1, -phi], np.r_[0, state_shocks[:-1]])

    assert_allclose(actual, desired)

    # SARIMAX(1,0,1)x(1,0,1,4), this time using the results object call
    mod = sarimax.SARIMAX([0.1, 0.5, -0.2],
                          order=(1, 0, 1),
                          seasonal_order=(1, 0, 1, 4))
    res = mod.filter([0.1, 0.5, 0.2, -0.3, 1])

    actual = res.simulate(nsimulations,
                          measurement_shocks=measurement_shocks,
                          state_shocks=state_shocks).squeeze()
    desired = lfilter(res.polynomial_reduced_ma, res.polynomial_reduced_ar,
                      np.r_[0, state_shocks[:-1]])

    assert_allclose(actual, desired)
Example #6
0
def test_impulse_responses():
    # Test for impulse response functions

    # Random walk: 1-unit impulse response (i.e. non-orthogonalized irf) is 1
    # for all periods
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.
    mod['state_cov', 0, 0] = 2.

    actual = mod.impulse_responses(steps=10)
    desired = np.ones((11, 1))

    assert_allclose(actual, desired)

    # Random walk: 1-standard-deviation response (i.e. orthogonalized irf) is
    # sigma for all periods (here sigma^2 = 2)
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.
    mod['state_cov', 0, 0] = 2.

    actual = mod.impulse_responses(steps=10, orthogonalized=True)
    desired = np.ones((11, 1)) * 2**0.5

    assert_allclose(actual, desired)

    # Random walk: 1-standard-deviation cumulative response (i.e. cumulative
    # orthogonalized irf)
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.
    mod['state_cov', 0, 0] = 2.

    actual = mod.impulse_responses(steps=10,
                                   orthogonalized=True,
                                   cumulative=True)
    desired = np.cumsum(np.ones((11, 1)) * 2**0.5)[:, np.newaxis]

    assert_allclose(actual, desired)

    # Random walk: 1-unit impulse response (i.e. non-orthogonalized irf) is 1
    # for all periods, even when intercepts are present
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['state_intercept', 0] = 100.
    mod['design', 0, 0] = 1.
    mod['obs_intercept', 0] = -1000.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.
    mod['state_cov', 0, 0] = 2.

    actual = mod.impulse_responses(steps=10)
    desired = np.ones((11, 1))

    assert_allclose(actual, desired)

    # Univariate model (random walk): test that an error is thrown when
    # a multivariate or empty "impulse" is sent
    mod = KalmanFilter(k_endog=1, k_states=1)
    assert_raises(ValueError, mod.impulse_responses, impulse=1)
    assert_raises(ValueError, mod.impulse_responses, impulse=[1, 1])
    assert_raises(ValueError, mod.impulse_responses, impulse=[])

    # Univariate model with two uncorrelated shocks
    mod = KalmanFilter(k_endog=1, k_states=2)
    mod['design', 0, 0:2] = 1.
    mod['transition', :, :] = np.eye(2)
    mod['selection', :, :] = np.eye(2)
    mod['state_cov', :, :] = np.eye(2)

    desired = np.ones((11, 1))

    actual = mod.impulse_responses(steps=10, impulse=0)
    assert_allclose(actual, desired)

    actual = mod.impulse_responses(steps=10, impulse=1)
    assert_allclose(actual, desired)

    # In this case (with sigma=sigma^2=1), orthogonalized is the same as not
    actual = mod.impulse_responses(steps=10, impulse=0, orthogonalized=True)
    assert_allclose(actual, desired)

    # Univariate model with two correlated shocks
    mod = KalmanFilter(k_endog=1, k_states=2)
    mod['design', 0, 0:2] = 1.
    mod['transition', :, :] = np.eye(2)
    mod['selection', :, :] = np.eye(2)
    mod['state_cov', :, :] = np.array([[1, 0.5], [0.5, 1.25]])

    desired = np.ones((11, 1))

    # Non-orthogonalized (i.e. 1-unit) impulses still just generate 1's
    actual = mod.impulse_responses(steps=10, impulse=0)
    assert_allclose(actual, desired)

    actual = mod.impulse_responses(steps=10, impulse=1)
    assert_allclose(actual, desired)

    # Orthogonalized (i.e. 1-std-dev) impulses now generate different responses
    actual = mod.impulse_responses(steps=10, impulse=0, orthogonalized=True)
    assert_allclose(actual, desired + desired * 0.5)

    actual = mod.impulse_responses(steps=10, impulse=1, orthogonalized=True)
    assert_allclose(actual, desired)

    # Multivariate model with two correlated shocks
    mod = KalmanFilter(k_endog=2, k_states=2)
    mod['design', :, :] = np.eye(2)
    mod['transition', :, :] = np.eye(2)
    mod['selection', :, :] = np.eye(2)
    mod['state_cov', :, :] = np.array([[1, 0.5], [0.5, 1.25]])

    ones = np.ones((11, 1))
    zeros = np.zeros((11, 1))

    # Non-orthogonalized (i.e. 1-unit) impulses still just generate 1's, but
    # only for the appropriate series
    actual = mod.impulse_responses(steps=10, impulse=0)
    assert_allclose(actual, np.c_[ones, zeros])

    actual = mod.impulse_responses(steps=10, impulse=1)
    assert_allclose(actual, np.c_[zeros, ones])

    # Orthogonalized (i.e. 1-std-dev) impulses now generate different
    # responses, and only for the appropriate series
    actual = mod.impulse_responses(steps=10, impulse=0, orthogonalized=True)
    assert_allclose(actual, np.c_[ones, ones * 0.5])

    actual = mod.impulse_responses(steps=10, impulse=1, orthogonalized=True)
    assert_allclose(actual, np.c_[zeros, ones])

    # AR(1) model generates a geometrically declining series
    mod = sarimax.SARIMAX([0.1, 0.5, -0.2], order=(1, 0, 0))
    phi = 0.5
    mod.update([phi, 1])

    desired = np.cumprod(np.r_[1, [phi] * 10])[:, np.newaxis]

    # Test going through the model directly
    actual = mod.ssm.impulse_responses(steps=10)
    assert_allclose(actual, desired)

    # Test going through the results object
    res = mod.filter([phi, 1.])
    actual = res.impulse_responses(steps=10)
    assert_allclose(actual, desired)