Example #1
0
def ranked_filter_pruning(config, ratio_to_prune, is_parallel, rounding_fn=math.floor):
    """Test L1 ranking and pruning of filters.
    First we rank and prune the filters of a Convolutional layer using
    a L1RankedStructureParameterPruner.  Then we physically remove the
    filters from the model (via "thining" process).
    """
    logger.info("executing: %s (invoked by %s)" % (inspect.currentframe().f_code.co_name,
                                                   inspect.currentframe().f_back.f_code.co_name))


    model, zeros_mask_dict = common.setup_test(config.arch, config.dataset, is_parallel)

    for pair in config.module_pairs:
        # Test that we can access the weights tensor of the first convolution in layer 1
        conv1_p = distiller.model_find_param(model, pair[0] + ".weight")
        assert conv1_p is not None
        num_filters = conv1_p.size(0)

        # Test that there are no zero-filters
        assert distiller.sparsity_3D(conv1_p) == 0.0

        # Create a filter-ranking pruner
        pruner = distiller.pruning.L1RankedStructureParameterPruner("filter_pruner",
                                                                    group_type="Filters",
                                                                    desired_sparsity=ratio_to_prune,
                                                                    weights=pair[0] + ".weight",
                                                                    rounding_fn=rounding_fn)
        pruner.set_param_mask(conv1_p, pair[0] + ".weight", zeros_mask_dict, meta=None)

        conv1 = common.find_module_by_name(model, pair[0])
        assert conv1 is not None
        # Test that the mask has the correct fraction of filters pruned.
        # We asked for 10%, but there are only 16 filters, so we have to settle for 1/16 filters
        expected_cnt_removed_filters = int(ratio_to_prune * conv1.out_channels)
        expected_pruning = expected_cnt_removed_filters / conv1.out_channels
        masker = zeros_mask_dict[pair[0] + ".weight"]
        assert masker is not None
        assert distiller.sparsity_3D(masker.mask) == expected_pruning

        # Use the mask to prune
        assert distiller.sparsity_3D(conv1_p) == 0
        masker.apply_mask(conv1_p)
        assert distiller.sparsity_3D(conv1_p) == expected_pruning

        # Remove filters
        conv2 = common.find_module_by_name(model, pair[1])
        assert conv2 is not None
        assert conv1.out_channels == num_filters
        assert conv2.in_channels == num_filters

    # Test thinning
    input_shape = tuple(distiller.apputils.classification_get_input_shape(config.dataset))
    distiller.remove_filters(model, zeros_mask_dict, input_shape, optimizer=None)
    assert conv1.out_channels == num_filters - expected_cnt_removed_filters
    assert conv2.in_channels == num_filters - expected_cnt_removed_filters

    # Test the thinned model
    dummy_input = distiller.get_dummy_input(config.dataset, distiller.model_device(model))
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.1)
    run_forward_backward(model, optimizer, dummy_input)
    
    return model, zeros_mask_dict
def handle_subapps(model, criterion, optimizer, compression_scheduler,
                   pylogger, args):
    def load_test_data(args):
        test_loader = classifier.load_data(args,
                                           load_train=False,
                                           load_val=False,
                                           load_test=True)
        return test_loader

    do_exit = False
    if args.greedy:
        greedy(model, criterion, optimizer, pylogger, args)
        do_exit = True
    elif args.summary:
        # This sample application can be invoked to produce various summary reports
        for summary in args.summary:
            distiller.model_summary(model, summary, args.dataset)
        do_exit = True
    elif args.export_onnx is not None:
        distiller.export_img_classifier_to_onnx(model,
                                                os.path.join(
                                                    msglogger.logdir,
                                                    args.export_onnx),
                                                args.dataset,
                                                add_softmax=True,
                                                verbose=False)
        do_exit = True
    elif args.qe_calibration:
        classifier.acts_quant_stats_collection(model, criterion, pylogger,
                                               args)
        do_exit = True
    elif args.activation_histograms:
        classifier.acts_histogram_collection(model, criterion, pylogger, args)
        do_exit = True
    elif args.sensitivity is not None:
        test_loader = load_test_data(args)
        #sensitivities = np.arange(args.sensitivity_range[0], args.sensitivity_range[1], args.sensitivity_range[2])
        sensitivities = np.arange(*args.sensitivity_range)
        sensitivity_analysis(model, criterion, test_loader, pylogger, args,
                             sensitivities)
        do_exit = True
    elif args.evaluate:
        test_loader = load_test_data(args)
        activations_collectors = classifier.create_activation_stats_collectors(
            model, *args.activation_stats)
        classifier.evaluate_model(model, criterion, test_loader, pylogger,
                                  activations_collectors, args,
                                  compression_scheduler)
        do_exit = True
    elif args.thinnify:
        #zeros_mask_dict = distiller.create_model_masks_dict(model)
        assert args.resumed_checkpoint_path is not None, \
            "You must use --resume-from to provide a checkpoint file to thinnify"
        distiller.remove_filters(model,
                                 compression_scheduler.zeros_mask_dict,
                                 args.arch,
                                 args.dataset,
                                 optimizer=None)
        apputils.save_checkpoint(0,
                                 args.arch,
                                 model,
                                 optimizer=None,
                                 scheduler=compression_scheduler,
                                 name="{}_thinned".format(
                                     args.resumed_checkpoint_path.replace(
                                         ".pth.tar", "")),
                                 dir=msglogger.logdir)
        msglogger.info(
            "Note: if your model collapsed to random inference, you may want to fine-tune"
        )
        do_exit = True
    return do_exit
Example #3
0
def main():
    script_dir = os.path.dirname(__file__)
    module_path = os.path.abspath(os.path.join(script_dir, '..', '..'))
    global msglogger

    # Parse arguments
    args = parser.get_parser().parse_args()
    if args.epochs is None:
        args.epochs = 90

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    msglogger = apputils.config_pylogger(
        os.path.join(script_dir, 'logging.conf'), args.name, args.output_dir)

    # Log various details about the execution environment.  It is sometimes useful
    # to refer to past experiment executions and this information may be useful.
    apputils.log_execution_env_state(args.compress,
                                     msglogger.logdir,
                                     gitroot=module_path)
    msglogger.debug("Distiller: %s", distiller.__version__)

    start_epoch = 0
    ending_epoch = args.epochs
    perf_scores_history = []

    if args.evaluate:
        args.deterministic = True
    if args.deterministic:
        # Experiment reproducibility is sometimes important.  Pete Warden expounded about this
        # in his blog: https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/
        distiller.set_deterministic(
        )  # Use a well-known seed, for repeatability of experiments
    else:
        # Turn on CUDNN benchmark mode for best performance. This is usually "safe" for image
        # classification models, as the input sizes don't change during the run
        # See here: https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
        cudnn.benchmark = True

    if args.cpu or not torch.cuda.is_available():
        # Set GPU index to -1 if using CPU
        args.device = 'cpu'
        args.gpus = -1
    else:
        args.device = 'cuda'
        if args.gpus is not None:
            try:
                args.gpus = [int(s) for s in args.gpus.split(',')]
            except ValueError:
                raise ValueError(
                    'ERROR: Argument --gpus must be a comma-separated list of integers only'
                )
            available_gpus = torch.cuda.device_count()
            for dev_id in args.gpus:
                if dev_id >= available_gpus:
                    raise ValueError(
                        'ERROR: GPU device ID {0} requested, but only {1} devices available'
                        .format(dev_id, available_gpus))
            # Set default device in case the first one on the list != 0
            torch.cuda.set_device(args.gpus[0])

    # Infer the dataset from the model name
    args.dataset = 'cifar10' if 'cifar' in args.arch else 'imagenet'
    args.num_classes = 10 if args.dataset == 'cifar10' else 1000

    # Create the model
    model = create_model(args.pretrained,
                         args.dataset,
                         args.arch,
                         parallel=not args.load_serialized,
                         device_ids=args.gpus)

    if args.swa:
        swa_model = create_model(args.pretrained,
                                 args.dataset,
                                 args.arch,
                                 parallel=not args.load_serialized,
                                 device_ids=args.gpus)
        swa_n = 0

    compression_scheduler = None
    # Create a couple of logging backends.  TensorBoardLogger writes log files in a format
    # that can be read by Google's Tensor Board.  PythonLogger writes to the Python logger.
    tflogger = TensorBoardLogger(msglogger.logdir)
    pylogger = PythonLogger(msglogger)

    # TODO(barrh): args.deprecated_resume is deprecated since v0.3.1
    if args.deprecated_resume:
        msglogger.warning(
            'The "--resume" flag is deprecated. Please use "--resume-from=YOUR_PATH" instead.'
        )
        if not args.reset_optimizer:
            msglogger.warning(
                'If you wish to also reset the optimizer, call with: --reset-optimizer'
            )
            args.reset_optimizer = True
        args.resumed_checkpoint_path = args.deprecated_resume

    # We can optionally resume from a checkpoint
    optimizer = None
    # TODO: resume from swa mode
    if args.resumed_checkpoint_path:
        if args.swa:
            model, swa_model, swa_n, compression_scheduler, optimizer, start_epoch = apputils.load_checkpoint(
                model,
                args.resumed_checkpoint_path,
                swa_model=swa_model,
                swa_n=swa_n,
                model_device=args.device)
        else:
            model, compression_scheduler, optimizer, start_epoch = apputils.load_checkpoint(
                model, args.resumed_checkpoint_path, model_device=args.device)
    elif args.load_model_path:
        model = apputils.load_lean_checkpoint(model,
                                              args.load_model_path,
                                              model_device=args.device)
    if args.reset_optimizer:
        start_epoch = 0
        if optimizer is not None:
            optimizer = None
            msglogger.info(
                '\nreset_optimizer flag set: Overriding resumed optimizer and resetting epoch count to 0'
            )

    # Define loss function (criterion)
    criterion = nn.CrossEntropyLoss().to(args.device)

    if optimizer is None:
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
        msglogger.info('Optimizer Type: %s', type(optimizer))
        msglogger.info('Optimizer Args: %s', optimizer.defaults)

    # This sample application can be invoked to produce various summary reports.
    if args.summary:
        return summarize_model(model, args.dataset, which_summary=args.summary)

    activations_collectors = create_activation_stats_collectors(
        model, *args.activation_stats)

    # Load the datasets: the dataset to load is inferred from the model name passed
    # in args.arch.  The default dataset is ImageNet, but if args.arch contains the
    # substring "_cifar", then cifar10 is used.
    train_loader, val_loader, test_loader, _ = apputils.load_data(
        args.dataset, os.path.expanduser(args.data), args.batch_size,
        args.workers, args.validation_split, args.deterministic,
        args.effective_train_size, args.effective_valid_size,
        args.effective_test_size)
    msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d',
                   len(train_loader.sampler), len(val_loader.sampler),
                   len(test_loader.sampler))

    if args.sensitivity is not None:
        sensitivities = np.arange(args.sensitivity_range[0],
                                  args.sensitivity_range[1],
                                  args.sensitivity_range[2])
        return sensitivity_analysis(model, criterion, test_loader, pylogger,
                                    args, sensitivities)

    if args.evaluate:
        return evaluate_model(model, criterion, test_loader, pylogger,
                              activations_collectors, args,
                              compression_scheduler)

    if args.compress:
        # The main use-case for this sample application is CNN compression. Compression
        # requires a compression schedule configuration file in YAML.
        compression_scheduler = distiller.file_config(
            model, optimizer, args.compress, compression_scheduler,
            (start_epoch - 1) if args.resumed_checkpoint_path else None)
        # Model is re-transferred to GPU in case parameters were added (e.g. PACTQuantizer)
        model.to(args.device)
    elif compression_scheduler is None:
        compression_scheduler = distiller.CompressionScheduler(model)

    if args.thinnify:
        #zeros_mask_dict = distiller.create_model_masks_dict(model)
        assert args.resumed_checkpoint_path is not None, \
            "You must use --resume-from to provide a checkpoint file to thinnify"
        distiller.remove_filters(model,
                                 compression_scheduler.zeros_mask_dict,
                                 args.arch,
                                 args.dataset,
                                 optimizer=None)
        apputils.save_checkpoint(0,
                                 args.arch,
                                 model,
                                 optimizer=None,
                                 scheduler=compression_scheduler,
                                 name="{}_thinned".format(
                                     args.resumed_checkpoint_path.replace(
                                         ".pth.tar", "")),
                                 dir=msglogger.logdir)
        print(
            "Note: your model may have collapsed to random inference, so you may want to fine-tune"
        )
        return

    if args.lr_find:
        lr_finder = distiller.LRFinder(model,
                                       optimizer,
                                       criterion,
                                       device=args.device)
        lr_finder.range_test(train_loader, end_lr=10, num_iter=100)
        lr_finder.plot()
        return

    if start_epoch >= ending_epoch:
        msglogger.error(
            'epoch count is too low, starting epoch is {} but total epochs set to {}'
            .format(start_epoch, ending_epoch))
        raise ValueError('Epochs parameter is too low. Nothing to do.')

    for epoch in range(start_epoch, ending_epoch):
        # This is the main training loop.
        msglogger.info('\n')

        if compression_scheduler:
            compression_scheduler.on_epoch_begin(
                epoch, metrics=(vloss if (epoch != start_epoch) else 10**6))

        # Train for one epoch
        with collectors_context(activations_collectors["train"]) as collectors:
            train(train_loader,
                  model,
                  criterion,
                  optimizer,
                  epoch,
                  compression_scheduler,
                  loggers=[tflogger, pylogger],
                  args=args)
            # distiller.log_weights_sparsity(model, epoch, loggers=[tflogger, pylogger])
            # distiller.log_activation_statsitics(epoch, "train", loggers=[tflogger],
            #                                     collector=collectors["sparsity"])
            if args.masks_sparsity:
                msglogger.info(
                    distiller.masks_sparsity_tbl_summary(
                        model, compression_scheduler))

        # evaluate on validation set
        with collectors_context(activations_collectors["valid"]) as collectors:
            top1, top5, vloss = validate(val_loader, model, criterion,
                                         [pylogger], args, epoch)
            msglogger.info('==> Top1: %.3f    Top5: %.3f    Loss: %.3f\n',
                           top1, top5, vloss)
            distiller.log_activation_statsitics(
                epoch,
                "valid",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            save_collectors_data(collectors, msglogger.logdir)

        stats = ('Performance/Validation/',
                 OrderedDict([('Loss', vloss), ('Top1', top1),
                              ('Top5', top5)]))

        if args.swa and (epoch + 1) >= args.swa_start and (
                epoch + 1 - args.swa_start
        ) % args.swa_freq == 0 or epoch == ending_epoch - 1:
            utils.moving_average(swa_model, model, 1. / (swa_n + 1))
            swa_n += 1
            utils.bn_update(train_loader, swa_model, args)
            swa_top1, swa_top5, swa_loss = validate(val_loader, swa_model,
                                                    criterion, [pylogger],
                                                    args, epoch)
            msglogger.info(
                '==> SWA_Top1: %.3f    SWA_Top5: %.3f    SWA_Loss: %.3f\n',
                swa_top1, swa_top5, swa_loss)
            swa_res = OrderedDict([('SWA_Loss', swa_loss),
                                   ('SWA_Top1', swa_top1),
                                   ('SWA_Top5', swa_top5)])
            stats[1].update(swa_res)

        distiller.log_training_progress(stats,
                                        None,
                                        epoch,
                                        steps_completed=0,
                                        total_steps=1,
                                        log_freq=1,
                                        loggers=[tflogger])

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch, optimizer)

        # Update the list of top scores achieved so far, and save the checkpoint
        update_training_scores_history(perf_scores_history, model, top1, top5,
                                       epoch, args.num_best_scores)
        is_best = epoch == perf_scores_history[0].epoch
        checkpoint_extras = {
            'current_top1': top1,
            'best_top1': perf_scores_history[0].top1,
            'best_epoch': perf_scores_history[0].epoch
        }
        if args.swa:
            apputils.save_checkpoint(epoch,
                                     args.arch,
                                     model,
                                     swa_model,
                                     swa_n,
                                     optimizer=optimizer,
                                     scheduler=compression_scheduler,
                                     extras=checkpoint_extras,
                                     is_best=is_best,
                                     name=args.name,
                                     dir=msglogger.logdir)
        else:
            apputils.save_checkpoint(epoch,
                                     args.arch,
                                     model,
                                     optimizer=optimizer,
                                     scheduler=compression_scheduler,
                                     extras=checkpoint_extras,
                                     is_best=is_best,
                                     name=args.name,
                                     dir=msglogger.logdir)
    # Finally run results on the test set
    test(test_loader,
         model,
         criterion, [pylogger],
         activations_collectors,
         args=args)
    if args.swa:
        test(test_loader,
             swa_model,
             criterion, [pylogger],
             activations_collectors,
             args=args)
def main():
    script_dir = os.path.dirname(__file__)
    module_path = os.path.abspath(os.path.join(script_dir, '..', '..'))
    global msglogger

    # Parse arguments
    args = parser.get_parser().parse_args()
    if args.epochs is None:
        args.epochs = 90

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    msglogger = apputils.config_pylogger(
        os.path.join(script_dir, 'logging.conf'), args.name, args.output_dir,
        args.verbose)

    # Log various details about the execution environment.  It is sometimes useful
    # to refer to past experiment executions and this information may be useful.
    apputils.log_execution_env_state(
        filter(None, [args.compress, args.qe_stats_file
                      ]),  # remove both None and empty strings
        msglogger.logdir,
        gitroot=module_path)
    msglogger.debug("Distiller: %s", distiller.__version__)

    if args.evaluate:
        args.deterministic = True
    if args.deterministic:
        distiller.set_deterministic(
            args.seed)  # For experiment reproducability
    else:
        if args.seed is not None:
            distiller.set_seed(args.seed)
        # Turn on CUDNN benchmark mode for best performance. This is usually "safe" for image
        # classification models, as the input sizes don't change during the run
        # See here: https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
        cudnn.benchmark = True

    start_epoch = 0
    ending_epoch = args.epochs
    perf_scores_history = []

    if args.cpu or not torch.cuda.is_available():
        # Set GPU index to -1 if using CPU
        args.device = 'cpu'
        args.gpus = -1
    else:
        args.device = 'cuda'
        if args.gpus is not None:
            try:
                args.gpus = [int(s) for s in args.gpus.split(',')]
            except ValueError:
                raise ValueError(
                    'ERROR: Argument --gpus must be a comma-separated list of integers only'
                )
            available_gpus = torch.cuda.device_count()
            for dev_id in args.gpus:
                if dev_id >= available_gpus:
                    raise ValueError(
                        'ERROR: GPU device ID {0} requested, but only {1} devices available'
                        .format(dev_id, available_gpus))
            # Set default device in case the first one on the list != 0
            torch.cuda.set_device(args.gpus[0])

    if 'cifar' in args.dataset:
        args.dataset = 'cifar10'
        args.num_classes = 10
    elif 'imagenet' in args.dataset:
        args.dataset = 'imagenet'
        args.num_classes = 1000

    # Infer the dataset from the model name
    # args.dataset = distiller.apputils.classification_dataset_str_from_arch(args.arch)
    # args.num_classes = distiller.apputils.classification_num_classes(args.dataset)

    if args.earlyexit_thresholds:
        args.num_exits = len(args.earlyexit_thresholds) + 1
        args.loss_exits = [0] * args.num_exits
        args.losses_exits = []
        args.exiterrors = []

    # Load the datasets: the dataset to load is inferred from the model name passed
    # in args.arch.  The default dataset is ImageNet, but if args.arch contains the
    # substring "_cifar", then cifar10 is used.

    # Expanded for hyperspectral datasets

    # the real load_data call (not wrapper) populates n_classes prior to get_model
    hyperparams = vars(args)
    hyperparams.update(
        {'model': args.arch}
    )  # for load_data, get_model needs the model name so that hyperparams can be populated prior to retrieving dataset
    if args.formerly_used_technique is not None:
        hyperparams.update(
            {'formerly_used_technique': args.formerly_used_technique})
    if args.old_n_components is not None:
        hyperparams.update({'n_bands': int(args.old_n_components)})
    train_loader, val_loader, test_loader, _ = load_data(
        args, hyperparams=hyperparams)

    hyperparams = dict((k, v) for k, v in hyperparams.items() if v is not None)

    msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d',
                   len(train_loader.sampler), len(val_loader.sampler),
                   len(test_loader.sampler))

    # Create the model
    model = create_model(args.pretrained,
                         args.dataset,
                         args.arch,
                         parallel=not args.load_serialized,
                         device_ids=args.gpus,
                         hyperparams=hyperparams)
    compression_scheduler = None
    # Create a couple of logging backends.  TensorBoardLogger writes log files in a format
    # that can be read by Google's Tensor Board.  PythonLogger writes to the Python logger.
    tflogger = TensorBoardLogger(msglogger.logdir)
    pylogger = PythonLogger(msglogger)

    # capture thresholds for early-exit training
    if args.earlyexit_thresholds:
        msglogger.info('=> using early-exit threshold values of %s',
                       args.earlyexit_thresholds)

    # TODO(barrh): args.deprecated_resume is deprecated since v0.3.1
    if args.deprecated_resume:
        msglogger.warning(
            'The "--resume" flag is deprecated. Please use "--resume-from=YOUR_PATH" instead.'
        )
        if not args.reset_optimizer:
            msglogger.warning(
                'If you wish to also reset the optimizer, call with: --reset-optimizer'
            )
            args.reset_optimizer = True
        args.resumed_checkpoint_path = args.deprecated_resume

    # We can optionally resume from a checkpoint
    optimizer = None
    if args.resumed_checkpoint_path:
        model, compression_scheduler, optimizer, start_epoch = apputils.load_checkpoint(
            model, args.resumed_checkpoint_path, model_device=args.device)
    elif args.load_model_path:
        model = apputils.load_lean_checkpoint(model,
                                              args.load_model_path,
                                              model_device=args.device)
    if args.reset_optimizer:
        start_epoch = 0
        if optimizer is not None:
            optimizer = None
            msglogger.info(
                '\nreset_optimizer flag set: Overriding resumed optimizer and resetting epoch count to 0'
            )

    # Define loss function (criterion)
    criterion = nn.CrossEntropyLoss().to(args.device)

    if optimizer is None:
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
        msglogger.info('Optimizer Type: %s', type(optimizer))
        msglogger.info('Optimizer Args: %s', optimizer.defaults)

    if args.AMC:
        return automated_deep_compression(model, criterion, optimizer,
                                          pylogger, args)
    if args.greedy:
        return greedy(model, criterion, optimizer, pylogger, args)

    # This sample application can be invoked to produce various summary reports.
    if args.summary:
        for summary in args.summary:
            distiller.model_summary(model, summary, args.dataset)
        return

    if args.export_onnx is not None:
        return distiller.export_img_classifier_to_onnx(model,
                                                       os.path.join(
                                                           msglogger.logdir,
                                                           args.export_onnx),
                                                       args.dataset,
                                                       add_softmax=True,
                                                       verbose=False)

    if args.qe_calibration:
        return acts_quant_stats_collection(model, criterion, pylogger, args)

    if args.activation_histograms:
        return acts_histogram_collection(model, criterion, pylogger, args)

    activations_collectors = create_activation_stats_collectors(
        model, *args.activation_stats)

    # Load the datasets: the dataset to load is inferred from the model name passed
    # in args.arch.  The default dataset is ImageNet, but if args.arch contains the
    # substring "_cifar", then cifar10 is used.
    train_loader, val_loader, test_loader, _ = load_data(
        args, hyperparams=hyperparams)
    msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d',
                   len(train_loader.sampler), len(val_loader.sampler),
                   len(test_loader.sampler))

    args.num_classes = hyperparams['n_classes']
    if args.sensitivity is not None:
        sensitivities = np.arange(args.sensitivity_range[0],
                                  args.sensitivity_range[1],
                                  args.sensitivity_range[2])
        return sensitivity_analysis(model, criterion, test_loader, pylogger,
                                    args, sensitivities)

    if args.evaluate:
        return evaluate_model(model, criterion, test_loader, pylogger,
                              activations_collectors, args,
                              compression_scheduler)

    if args.compress:
        # The main use-case for this sample application is CNN compression. Compression
        # requires a compression schedule configuration file in YAML.
        compression_scheduler = distiller.file_config(
            model, optimizer, args.compress, compression_scheduler,
            (start_epoch - 1) if args.resumed_checkpoint_path else None)
        # Model is re-transferred to GPU in case parameters were added (e.g. PACTQuantizer)
        model.to(args.device)
    elif compression_scheduler is None:
        compression_scheduler = distiller.CompressionScheduler(model)

    if args.thinnify:
        #zeros_mask_dict = distiller.create_model_masks_dict(model)
        assert args.resumed_checkpoint_path is not None, \
            "You must use --resume-from to provide a checkpoint file to thinnify"
        distiller.remove_filters(model,
                                 compression_scheduler.zeros_mask_dict,
                                 args.arch,
                                 args.dataset,
                                 optimizer=None)
        apputils.save_checkpoint(0,
                                 args.arch,
                                 model,
                                 optimizer=None,
                                 scheduler=compression_scheduler,
                                 name="{}_thinned".format(
                                     args.resumed_checkpoint_path.replace(
                                         ".pth.tar", "")),
                                 dir=msglogger.logdir)
        print(
            "Note: your model may have collapsed to random inference, so you may want to fine-tune"
        )
        return

    args.kd_policy = None
    if args.kd_teacher:
        teacher = create_model(args.kd_pretrained,
                               args.dataset,
                               args.kd_teacher,
                               device_ids=args.gpus)
        if args.kd_resume:
            teacher = apputils.load_lean_checkpoint(teacher, args.kd_resume)
        dlw = distiller.DistillationLossWeights(args.kd_distill_wt,
                                                args.kd_student_wt,
                                                args.kd_teacher_wt)
        args.kd_policy = distiller.KnowledgeDistillationPolicy(
            model, teacher, args.kd_temp, dlw)
        compression_scheduler.add_policy(args.kd_policy,
                                         starting_epoch=args.kd_start_epoch,
                                         ending_epoch=args.epochs,
                                         frequency=1)

        msglogger.info('\nStudent-Teacher knowledge distillation enabled:')
        msglogger.info('\tTeacher Model: %s', args.kd_teacher)
        msglogger.info('\tTemperature: %s', args.kd_temp)
        msglogger.info('\tLoss Weights (distillation | student | teacher): %s',
                       ' | '.join(['{:.2f}'.format(val) for val in dlw]))
        msglogger.info('\tStarting from Epoch: %s', args.kd_start_epoch)

    if start_epoch >= ending_epoch:
        msglogger.error(
            'epoch count is too low, starting epoch is {} but total epochs set to {}'
            .format(start_epoch, ending_epoch))
        raise ValueError('Epochs parameter is too low. Nothing to do.')
    for epoch in range(start_epoch, ending_epoch):
        # This is the main training loop.
        msglogger.info('\n')
        if compression_scheduler:
            compression_scheduler.on_epoch_begin(
                epoch, metrics=(vloss if (epoch != start_epoch) else 10**6))

        # Train for one epoch
        with collectors_context(activations_collectors["train"]) as collectors:
            train(train_loader,
                  model,
                  criterion,
                  optimizer,
                  epoch,
                  compression_scheduler,
                  loggers=[tflogger, pylogger],
                  args=args)
            distiller.log_weights_sparsity(model,
                                           epoch,
                                           loggers=[tflogger, pylogger])
            distiller.log_activation_statsitics(
                epoch,
                "train",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            if args.masks_sparsity:
                msglogger.info(
                    distiller.masks_sparsity_tbl_summary(
                        model, compression_scheduler))

        # evaluate on validation set
        with collectors_context(activations_collectors["valid"]) as collectors:
            top1, top5, vloss = validate(val_loader, model, criterion,
                                         [pylogger], args, epoch)
            distiller.log_activation_statsitics(
                epoch,
                "valid",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            save_collectors_data(collectors, msglogger.logdir)

        stats = ('Performance/Validation/',
                 OrderedDict([('Loss', vloss), ('Top1', top1),
                              ('Top5', top5)]))
        distiller.log_training_progress(stats,
                                        None,
                                        epoch,
                                        steps_completed=0,
                                        total_steps=1,
                                        log_freq=1,
                                        loggers=[tflogger])

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch, optimizer)

        # Update the list of top scores achieved so far, and save the checkpoint
        update_training_scores_history(perf_scores_history, model, top1, top5,
                                       epoch, args.num_best_scores)
        is_best = epoch == perf_scores_history[0].epoch
        checkpoint_extras = {
            'current_top1': top1,
            'best_top1': perf_scores_history[0].top1,
            'best_epoch': perf_scores_history[0].epoch
        }
        apputils.save_checkpoint(epoch,
                                 args.arch,
                                 model,
                                 optimizer=optimizer,
                                 scheduler=compression_scheduler,
                                 extras=checkpoint_extras,
                                 is_best=is_best,
                                 name=args.name,
                                 dir=msglogger.logdir)

    # Finally run results on the test set
    test(test_loader,
         model,
         criterion, [pylogger],
         activations_collectors,
         args=args)
def main():
    script_dir = os.path.dirname(__file__)
    module_path = os.path.abspath(os.path.join(script_dir, '..', '..'))
    global msglogger

    # Parse arguments
    args = parser.get_parser().parse_args()

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    msglogger = apputils.config_pylogger(
        os.path.join(script_dir, 'logging.conf'), args.name, args.output_dir)

    # Log various details about the execution environment.  It is sometimes useful
    # to refer to past experiment executions and this information may be useful.
    apputils.log_execution_env_state(args.compress,
                                     msglogger.logdir,
                                     gitroot=module_path)
    msglogger.debug("Distiller: %s", distiller.__version__)

    start_epoch = 0
    best_epochs = [
        distiller.MutableNamedTuple({
            'epoch': 0,
            'top1': 0,
            'sparsity': 0
        }) for i in range(args.num_best_scores)
    ]

    if args.deterministic:
        # Experiment reproducibility is sometimes important.  Pete Warden expounded about this
        # in his blog: https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/
        # In Pytorch, support for deterministic execution is still a bit clunky.
        if args.workers > 1:
            msglogger.error(
                'ERROR: Setting --deterministic requires setting --workers/-j to 0 or 1'
            )
            exit(1)
        # Use a well-known seed, for repeatability of experiments
        distiller.set_deterministic()
    else:
        # This issue: https://github.com/pytorch/pytorch/issues/3659
        # Implies that cudnn.benchmark should respect cudnn.deterministic, but empirically we see that
        # results are not re-produced when benchmark is set. So enabling only if deterministic mode disabled.
        cudnn.benchmark = True

    if args.cpu or not torch.cuda.is_available():
        # Set GPU index to -1 if using CPU
        args.device = 'cpu'
        args.gpus = -1
    else:
        args.device = 'cuda'
        if args.gpus is not None:
            try:
                args.gpus = [int(s) for s in args.gpus.split(',')]
            except ValueError:
                msglogger.error(
                    'ERROR: Argument --gpus must be a comma-separated list of integers only'
                )
                exit(1)
            available_gpus = torch.cuda.device_count()
            for dev_id in args.gpus:
                if dev_id >= available_gpus:
                    msglogger.error(
                        'ERROR: GPU device ID {0} requested, but only {1} devices available'
                        .format(dev_id, available_gpus))
                    exit(1)
            # Set default device in case the first one on the list != 0
            torch.cuda.set_device(args.gpus[0])

    # Infer the dataset from the model name
    args.dataset = 'cifar10' if 'cifar' in args.arch else 'imagenet'
    args.num_classes = 10 if args.dataset == 'cifar10' else 1000

    if args.earlyexit_thresholds:
        args.num_exits = len(args.earlyexit_thresholds) + 1
        args.loss_exits = [0] * args.num_exits
        args.losses_exits = []
        args.exiterrors = []

    # Create the model
    model = create_model(args.pretrained,
                         args.dataset,
                         args.arch,
                         parallel=not args.load_serialized,
                         device_ids=args.gpus)
    compression_scheduler = None
    # Create a couple of logging backends.  TensorBoardLogger writes log files in a format
    # that can be read by Google's Tensor Board.  PythonLogger writes to the Python logger.
    tflogger = TensorBoardLogger(msglogger.logdir)
    pylogger = PythonLogger(msglogger)

    # capture thresholds for early-exit training
    if args.earlyexit_thresholds:
        msglogger.info('=> using early-exit threshold values of %s',
                       args.earlyexit_thresholds)

    # We can optionally resume from a checkpoint
    if args.resume:
        model, compression_scheduler, start_epoch = apputils.load_checkpoint(
            model, chkpt_file=args.resume)
        model.to(args.device)

    # Define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().to(args.device)

    optimizer = torch.optim.SGD(model.parameters(),
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    msglogger.info('Optimizer Type: %s', type(optimizer))
    msglogger.info('Optimizer Args: %s', optimizer.defaults)

    if args.AMC:
        return automated_deep_compression(model, criterion, optimizer,
                                          pylogger, args)
    if args.greedy:
        return greedy(model, criterion, optimizer, pylogger, args)

    # This sample application can be invoked to produce various summary reports.
    if args.summary:
        return summarize_model(model, args.dataset, which_summary=args.summary)

    activations_collectors = create_activation_stats_collectors(
        model, *args.activation_stats)

    if args.qe_calibration:
        msglogger.info('Quantization calibration stats collection enabled:')
        msglogger.info(
            '\tStats will be collected for {:.1%} of test dataset'.format(
                args.qe_calibration))
        msglogger.info(
            '\tSetting constant seeds and converting model to serialized execution'
        )
        distiller.set_deterministic()
        model = distiller.make_non_parallel_copy(model)
        activations_collectors.update(
            create_quantization_stats_collector(model))
        args.evaluate = True
        args.effective_test_size = args.qe_calibration

    # Load the datasets: the dataset to load is inferred from the model name passed
    # in args.arch.  The default dataset is ImageNet, but if args.arch contains the
    # substring "_cifar", then cifar10 is used.
    train_loader, val_loader, test_loader, _ = apputils.load_data(
        args.dataset, os.path.expanduser(args.data), args.batch_size,
        args.workers, args.validation_split, args.deterministic,
        args.effective_train_size, args.effective_valid_size,
        args.effective_test_size)
    msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d',
                   len(train_loader.sampler), len(val_loader.sampler),
                   len(test_loader.sampler))

    if args.sensitivity is not None:
        sensitivities = np.arange(args.sensitivity_range[0],
                                  args.sensitivity_range[1],
                                  args.sensitivity_range[2])
        return sensitivity_analysis(model, criterion, test_loader, pylogger,
                                    args, sensitivities)

    if args.evaluate:
        return evaluate_model(model, criterion, test_loader, pylogger,
                              activations_collectors, args,
                              compression_scheduler)

    if args.compress:
        # The main use-case for this sample application is CNN compression. Compression
        # requires a compression schedule configuration file in YAML.
        compression_scheduler = distiller.file_config(model, optimizer,
                                                      args.compress,
                                                      compression_scheduler)
        # Model is re-transferred to GPU in case parameters were added (e.g. PACTQuantizer)
        model.to(args.device)
    elif compression_scheduler is None:
        compression_scheduler = distiller.CompressionScheduler(model)

    if args.thinnify:
        #zeros_mask_dict = distiller.create_model_masks_dict(model)
        assert args.resume is not None, "You must use --resume to provide a checkpoint file to thinnify"
        distiller.remove_filters(model,
                                 compression_scheduler.zeros_mask_dict,
                                 args.arch,
                                 args.dataset,
                                 optimizer=None)
        apputils.save_checkpoint(0,
                                 args.arch,
                                 model,
                                 optimizer=None,
                                 scheduler=compression_scheduler,
                                 name="{}_thinned".format(
                                     args.resume.replace(".pth.tar", "")),
                                 dir=msglogger.logdir)
        print(
            "Note: your model may have collapsed to random inference, so you may want to fine-tune"
        )
        return

    args.kd_policy = None
    if args.kd_teacher:
        teacher = create_model(args.kd_pretrained,
                               args.dataset,
                               args.kd_teacher,
                               device_ids=args.gpus)
        if args.kd_resume:
            teacher, _, _ = apputils.load_checkpoint(teacher,
                                                     chkpt_file=args.kd_resume)
        dlw = distiller.DistillationLossWeights(args.kd_distill_wt,
                                                args.kd_student_wt,
                                                args.kd_teacher_wt)
        args.kd_policy = distiller.KnowledgeDistillationPolicy(
            model, teacher, args.kd_temp, dlw)
        compression_scheduler.add_policy(args.kd_policy,
                                         starting_epoch=args.kd_start_epoch,
                                         ending_epoch=args.epochs,
                                         frequency=1)

        msglogger.info('\nStudent-Teacher knowledge distillation enabled:')
        msglogger.info('\tTeacher Model: %s', args.kd_teacher)
        msglogger.info('\tTemperature: %s', args.kd_temp)
        msglogger.info('\tLoss Weights (distillation | student | teacher): %s',
                       ' | '.join(['{:.2f}'.format(val) for val in dlw]))
        msglogger.info('\tStarting from Epoch: %s', args.kd_start_epoch)

    for epoch in range(start_epoch, start_epoch + args.epochs):
        # This is the main training loop.
        msglogger.info('\n')
        if compression_scheduler:
            compression_scheduler.on_epoch_begin(epoch)

        # Train for one epoch
        with collectors_context(activations_collectors["train"]) as collectors:
            train(train_loader,
                  model,
                  criterion,
                  optimizer,
                  epoch,
                  compression_scheduler,
                  loggers=[tflogger, pylogger],
                  args=args)
            distiller.log_weights_sparsity(model,
                                           epoch,
                                           loggers=[tflogger, pylogger])
            distiller.log_activation_statsitics(
                epoch,
                "train",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            if args.masks_sparsity:
                msglogger.info(
                    distiller.masks_sparsity_tbl_summary(
                        model, compression_scheduler))

        # evaluate on validation set
        with collectors_context(activations_collectors["valid"]) as collectors:
            top1, top5, vloss = validate(val_loader, model, criterion,
                                         [pylogger], args, epoch)
            distiller.log_activation_statsitics(
                epoch,
                "valid",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            save_collectors_data(collectors, msglogger.logdir)

        stats = ('Peformance/Validation/',
                 OrderedDict([('Loss', vloss), ('Top1', top1),
                              ('Top5', top5)]))
        distiller.log_training_progress(stats,
                                        None,
                                        epoch,
                                        steps_completed=0,
                                        total_steps=1,
                                        log_freq=1,
                                        loggers=[tflogger])

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch, optimizer)

        # Update the list of top scores achieved so far, and save the checkpoint
        is_best = top1 > best_epochs[-1].top1
        if top1 > best_epochs[0].top1:
            best_epochs[0].epoch = epoch
            best_epochs[0].top1 = top1
            # Keep best_epochs sorted such that best_epochs[0] is the lowest top1 in the best_epochs list
            best_epochs = sorted(best_epochs, key=lambda score: score.top1)
        for score in reversed(best_epochs):
            if score.top1 > 0:
                msglogger.info('==> Best Top1: %.3f on Epoch: %d', score.top1,
                               score.epoch)
        apputils.save_checkpoint(epoch, args.arch, model, optimizer,
                                 compression_scheduler, best_epochs[-1].top1,
                                 is_best, args.name, msglogger.logdir)

    # Finally run results on the test set
    test(test_loader,
         model,
         criterion, [pylogger],
         activations_collectors,
         args=args)
Example #6
0
def test_conv_fc_interface(is_parallel=parallel,
                           model=None,
                           zeros_mask_dict=None):
    """A special case of convolution filter-pruning occurs when the next layer is
    fully-connected (linear).  This test is for this case and uses VGG16.
    """
    arch = "vgg19"
    dataset = "imagenet"
    ratio_to_prune = 0.1
    if is_parallel:
        conv_name = "features.module.34"
    else:
        conv_name = "features.34"
    fc_name = "classifier.0"
    dummy_input = torch.randn(1, 3, 224, 224).cuda()

    if model is None or zeros_mask_dict is None:
        model, zeros_mask_dict = common.setup_test(arch, dataset, is_parallel)

    # Run forward and backward passes, in order to create the gradients and optimizer params
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=0.01,
                                momentum=0.9,
                                weight_decay=0.1)
    run_forward_backward(model, optimizer, dummy_input)

    conv = common.find_module_by_name(model, conv_name)
    assert conv is not None

    conv_p = distiller.model_find_param(model, conv_name + ".weight")
    assert conv_p is not None
    assert conv_p.dim() == 4

    # Create a filter-ranking pruner
    pruner = distiller.pruning.L1RankedStructureParameterPruner(
        "filter_pruner",
        group_type="Filters",
        desired_sparsity=ratio_to_prune,
        weights=conv_name + ".weight")
    pruner.set_param_mask(conv_p,
                          conv_name + ".weight",
                          zeros_mask_dict,
                          meta=None)

    # Use the mask to prune
    masker = zeros_mask_dict[conv_name + ".weight"]
    assert masker is not None
    masker.apply_mask(conv_p)
    num_filters = conv_p.size(0)
    expected_cnt_removed_filters = int(ratio_to_prune * conv.out_channels)

    # Remove filters
    fc = common.find_module_by_name(model, fc_name)
    assert fc is not None

    # Test thinning
    fm_size = fc.in_features // conv.out_channels
    num_nnz_filters = num_filters - expected_cnt_removed_filters
    distiller.remove_filters(model, zeros_mask_dict, arch, dataset, optimizer)
    assert conv.out_channels == num_nnz_filters
    assert fc.in_features == fm_size * num_nnz_filters

    # Run again, to make sure the optimizer and gradients shapes were updated correctly
    run_forward_backward(model, optimizer, dummy_input)
    run_forward_backward(model, optimizer, dummy_input)
Example #7
0
def main():
    script_dir = os.path.dirname(__file__)
    module_path = os.path.abspath(os.path.join(script_dir, '..', '..'))
    global msglogger

    # Parse arguments
    args = parser.get_parser().parse_args()

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    msglogger = apputils.config_pylogger(
        os.path.join(script_dir, 'logging.conf'), args.name, args.output_dir)

    # Log various details about the execution environment.  It is sometimes useful
    # to refer to past experiment executions and this information may be useful.
    apputils.log_execution_env_state(args.compress,
                                     msglogger.logdir,
                                     gitroot=module_path)
    msglogger.debug("Distiller: %s", distiller.__version__)

    start_epoch = 0
    best_epochs = list()

    if args.deterministic:
        if args.loaders is None:
            args.loaders = 1
        # Experiment reproducibility is sometimes important.  Pete Warden expounded about this
        # in his blog: https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/
        # In Pytorch, support for deterministic execution is still a bit clunky.
        if args.loaders > 1:
            msglogger.error(
                'ERROR: Setting --deterministic requires setting --loaders to 0 or 1'
            )
            exit(1)
        # Use a well-known seed, for repeatability of experiments
        distiller.set_deterministic()
    else:
        # This issue: https://github.com/pytorch/pytorch/issues/3659
        # Implies that cudnn.benchmark should respect cudnn.deterministic, but empirically we see that
        # results are not re-produced when benchmark is set. So enabling only if deterministic mode disabled.
        cudnn.benchmark = True

    if args.use_cpu or (args.gpus is None
                        and not torch.cuda.is_available()) or (args.gpus
                                                               == ''):
        # Set GPU index to -1 if using CPU
        args.device = 'cpu'
        args.gpus = -1
    else:
        args.device = 'cuda'
        if args.gpus is not None:
            try:
                args.gpus = [int(s) for s in args.gpus.split(',')]
            except ValueError:
                msglogger.error(
                    'ERROR: Argument --gpus must be a comma-separated list of integers only'
                )
                exit(1)
            available_gpus = torch.cuda.device_count()
            for dev_id in args.gpus:
                if dev_id >= available_gpus:
                    msglogger.error(
                        'ERROR: GPU device ID {0} requested, but only {1} devices available'
                        .format(dev_id, available_gpus))
                    exit(1)
            # Set default device in case the first one on the list != 0
            torch.cuda.set_device(args.gpus[0])

    if args.loaders is None:
        active_gpus = args.gpus if args.gpus is not None else torch.cuda.device_count(
        )
        args.loaders = max(parser.DEFAULT_LOADERS_COUNT,
                           parser.DEFAULT_LOADERS_COUNT * active_gpus)
    msglogger.debug('Number of data loaders set to: {}'.format(args.loaders))

    # Infer the dataset from the model name
    args.dataset = 'cifar10' if 'cifar' in args.arch else 'imagenet'
    args.num_classes = 10 if args.dataset == 'cifar10' else 1000

    if args.earlyexit_thresholds:
        args.num_exits = len(args.earlyexit_thresholds) + 1
        args.loss_exits = [0] * args.num_exits
        args.losses_exits = []
        args.exiterrors = []

    # Create the model
    model = create_model(args.pretrained,
                         args.dataset,
                         args.arch,
                         parallel=not args.load_serialized,
                         device_ids=args.gpus)
    compression_scheduler = None
    # Create a couple of logging backends.  TensorBoardLogger writes log files in a format
    # that can be read by Google's Tensor Board.  PythonLogger writes to the Python logger.
    tflogger = TensorBoardLogger(msglogger.logdir)
    pylogger = PythonLogger(msglogger)

    # capture thresholds for early-exit training
    if args.earlyexit_thresholds:
        msglogger.info('=> using early-exit threshold values of %s',
                       args.earlyexit_thresholds)

    # We can optionally resume from a checkpoint
    optimizer = None
    resumed_training_steps = None
    if args.resume or args.load_state_dict:
        if args.resume and not args.reset_optimizer:
            # initiate SGD with dummy lr
            optimizer = torch.optim.SGD(model.parameters(), lr=0.36787944117)
        model, compression_scheduler, optimizer, start_epoch, resumed_training_steps = apputils.load_checkpoint(
            model, args.resume or args.load_state_dict, optimizer=optimizer)
        model.to(args.device)

    # Define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().to(args.device)

    if optimizer is not None:
        # optimizer was resumed from checkpoint
        # check if user has tried to set optimizer arguments
        # if so, ignore arguments with a warning.
        optimizer_group_args = [
            'lr', 'learning-rate', 'momentum', 'weight-decay', 'wd'
        ]
        user_optim_args = [
            x for x in optimizer_group_args for arg in sys.argv
            if arg.startswith('--' + x)
        ]
        if user_optim_args:
            msglogger.warning(
                '{} optimizer arguments are ignored.'.format(user_optim_args))
            msglogger.info(
                'setting optimizer arguments when optimizer is resumed '
                'from checkpoint is forbidden.')
    else:
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
        msglogger.info('Optimizer Type: %s', type(optimizer))
        msglogger.info('Optimizer Args: %s', optimizer.defaults)

    if args.AMC:
        return automated_deep_compression(model, criterion, optimizer,
                                          pylogger, args)
    if args.greedy:
        return greedy(model, criterion, optimizer, pylogger, args)

    # This sample application can be invoked to produce various summary reports.
    if args.summary:
        return summarize_model(model, args.dataset, which_summary=args.summary)

    activations_collectors = create_activation_stats_collectors(
        model, *args.activation_stats)

    if args.qe_calibration:
        msglogger.info('Quantization calibration stats collection enabled:')
        msglogger.info(
            '\tStats will be collected for {:.1%} of test dataset'.format(
                args.qe_calibration))
        msglogger.info(
            '\tSetting constant seeds and converting model to serialized execution'
        )
        distiller.set_deterministic()
        model = distiller.make_non_parallel_copy(model)
        activations_collectors.update(
            create_quantization_stats_collector(model))
        args.evaluate = True
        args.effective_test_size = args.qe_calibration

    # Load the datasets: the dataset to load is inferred from the model name passed
    # in args.arch.  The default dataset is ImageNet, but if args.arch contains the
    # substring "_cifar", then cifar10 is used.
    train_loader, val_loader, test_loader, _ = apputils.load_data(
        args.dataset, os.path.expanduser(args.data), args.batch_size,
        args.loaders, args.validation_split, args.deterministic,
        args.effective_train_size, args.effective_valid_size,
        args.effective_test_size)
    msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d',
                   len(train_loader.sampler), len(val_loader.sampler),
                   len(test_loader.sampler))
    args.trainset_print_period = parser.getPrintPeriod(
        args, len(train_loader.sampler), args.batch_size)
    args.validset_print_period = parser.getPrintPeriod(args,
                                                       len(val_loader.sampler),
                                                       args.batch_size)
    args.testset_print_period = parser.getPrintPeriod(args,
                                                      len(test_loader.sampler),
                                                      args.batch_size)

    if args.sensitivity is not None:
        sensitivities = np.arange(args.sensitivity_range[0],
                                  args.sensitivity_range[1],
                                  args.sensitivity_range[2])
        return sensitivity_analysis(model, criterion, test_loader, pylogger,
                                    args, sensitivities)

    if args.evaluate:
        return evaluate_model(model, criterion, test_loader, pylogger,
                              activations_collectors, args,
                              compression_scheduler)

    if args.compress:
        # The main use-case for this sample application is CNN compression. Compression
        # requires a compression schedule configuration file in YAML.
        compression_scheduler = distiller.file_config(
            model, optimizer, args.compress, compression_scheduler,
            (start_epoch - 1) if
            (args.resume and not args.reset_optimizer) else None)
        # Model is re-transferred to GPU in case parameters were added (e.g. PACTQuantizer)
        model.to(args.device)
    elif compression_scheduler is None:
        compression_scheduler = distiller.CompressionScheduler(model)

    if args.thinnify:
        #zeros_mask_dict = distiller.create_model_masks_dict(model)
        assert args.resume is not None, "You must use --resume to provide a checkpoint file to thinnify"
        distiller.remove_filters(model,
                                 compression_scheduler.zeros_mask_dict,
                                 args.arch,
                                 args.dataset,
                                 optimizer=None)
        apputils.save_checkpoint(0,
                                 args.arch,
                                 model,
                                 optimizer=None,
                                 scheduler=compression_scheduler,
                                 name="{}_thinned".format(
                                     args.resume.replace(".pth.tar", "")),
                                 dir=msglogger.logdir)
        print(
            "Note: your model may have collapsed to random inference, so you may want to fine-tune"
        )
        return

    args.kd_policy = None
    if args.kd_teacher:
        teacher = create_model(args.kd_pretrained,
                               args.dataset,
                               args.kd_teacher,
                               device_ids=args.gpus)
        if args.kd_resume:
            teacher = apputils.load_checkpoint(teacher,
                                               chkpt_file=args.kd_resume)[0]
        dlw = distiller.DistillationLossWeights(args.kd_distill_wt,
                                                args.kd_student_wt,
                                                args.kd_teacher_wt)
        args.kd_policy = distiller.KnowledgeDistillationPolicy(
            model, teacher, args.kd_temp, dlw)
        compression_scheduler.add_policy(
            args.kd_policy, range(args.kd_start_epoch, args.epochs, 1))

        msglogger.info('\nStudent-Teacher knowledge distillation enabled:')
        msglogger.info('\tTeacher Model: %s', args.kd_teacher)
        msglogger.info('\tTemperature: %s', args.kd_temp)
        msglogger.info('\tLoss Weights (distillation | student | teacher): %s',
                       ' | '.join(['{:.2f}'.format(val) for val in dlw]))
        msglogger.info('\tStarting from Epoch: %s', args.kd_start_epoch)

    if getattr(compression_scheduler, 'global_policy_end_epoch',
               None) is not None:
        if compression_scheduler.global_policy_end_epoch >= (start_epoch +
                                                             args.epochs):
            msglogger.warning(
                'scheduler requires at least {} epochs, but only {} are sanctioned'
                .format(compression_scheduler.global_policy_end_epoch,
                        args.epochs))

    accumulated_training_steps = resumed_training_steps if resumed_training_steps is not None else 0
    for epoch in range(start_epoch, start_epoch + args.epochs):
        # This is the main training loop.
        msglogger.info('\n')
        if compression_scheduler:
            compression_scheduler.on_epoch_begin(epoch)

        # Train for one epoch
        with collectors_context(activations_collectors["train"]) as collectors:
            try:
                train(train_loader,
                      model,
                      criterion,
                      optimizer,
                      epoch,
                      accumulated_training_steps,
                      compression_scheduler,
                      loggers=[tflogger, pylogger],
                      args=args)
            except RuntimeError as e:
                if ('cuda out of memory' in str(e).lower()):
                    msglogger.error(
                        'CUDA memory failure has been detected.\n'
                        'Sometimes it helps to decrease batch size.\n'
                        'e.g. Add the following flag to your call: --batch-size={}'
                        .format(args.batch_size // 10))
                raise
            distiller.log_weights_sparsity(model,
                                           epoch,
                                           loggers=[tflogger, pylogger])
            distiller.log_activation_statsitics(
                epoch,
                "train",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            if args.masks_sparsity:
                msglogger.info(
                    distiller.masks_sparsity_tbl_summary(
                        model, compression_scheduler))
        accumulated_training_steps += math.ceil(
            len(train_loader.sampler) / train_loader.batch_size)

        # evaluate on validation set
        with collectors_context(activations_collectors["valid"]) as collectors:
            top1, top5, vloss = validate(val_loader, model, criterion,
                                         [pylogger], args, epoch)
            distiller.log_activation_statsitics(
                epoch,
                "valid",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            save_collectors_data(collectors, msglogger.logdir)

        stats = ('Performance/Validation/',
                 OrderedDict([('Loss', vloss), ('Top1', top1),
                              ('Top5', top5)]))
        tflogger.log_training_progress(stats, epoch, None)

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch, optimizer)

        if getattr(compression_scheduler, 'global_policy_end_epoch',
                   None) is None or (
                       compression_scheduler.global_policy_end_epoch <= epoch):
            # Update the list of top scores achieved since all policies have concluded
            if top1 > 0:
                best_epochs.append(
                    distiller.MutableNamedTuple({
                        'top1': top1,
                        'top5': top5,
                        'epoch': epoch
                    }))
            # Keep best_epochs sorted from best to worst
            # Sort by top1 first, secondary sort by top5, and so forth
            best_epochs.sort(key=operator.attrgetter('top1', 'top5', 'epoch'),
                             reverse=True)
            for score in best_epochs[:args.num_best_scores]:
                msglogger.info('==> Best Top1: %.3f Top5: %.3f on epoch: %d',
                               score.top1, score.top5, score.epoch)

        is_best = best_epochs and (epoch == best_epochs[0].epoch)
        apputils.save_checkpoint(epoch, args.arch, model, optimizer,
                                 compression_scheduler,
                                 best_epochs[0].top1 if best_epochs else None,
                                 is_best, args.name, msglogger.logdir,
                                 accumulated_training_steps)

    # Finally run results on the test set
    test(test_loader,
         model,
         criterion, [pylogger],
         activations_collectors,
         args=args)
Example #8
0
def main():
    script_dir = os.path.dirname(__file__)
    module_path = os.path.abspath(os.path.join(script_dir, '..', '..'))
    global msglogger

    # Parse arguments
    args = parser.get_parser().parse_args()
    if args.epochs is None:
        args.epochs = 200

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    msglogger = apputils.config_pylogger(
        os.path.join(script_dir, 'logging.conf'), args.name, args.output_dir)

    # Log various details about the execution environment.  It is sometimes useful
    # to refer to past experiment executions and this information may be useful.
    apputils.log_execution_env_state(
        filter(None, [args.compress, args.qe_stats_file
                      ]),  # remove both None and empty strings
        msglogger.logdir,
        gitroot=module_path)
    msglogger.debug("Distiller: %s", distiller.__version__)

    if args.evaluate:
        args.deterministic = True
    if args.deterministic:
        distiller.set_deterministic(
            args.seed)  # For experiment reproducability
    else:
        if args.seed is not None:
            distiller.set_seed(args.seed)
        # Turn on CUDNN benchmark mode for best performance. This is usually "safe" for image
        # classification models, as the input sizes don't change during the run
        # See here: https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
        cudnn.benchmark = True

    start_epoch = 0
    ending_epoch = args.epochs
    perf_scores_history = []

    if args.cpu or not torch.cuda.is_available():
        # Set GPU index to -1 if using CPU
        args.device = 'cpu'
        args.gpus = -1
    else:
        args.device = 'cuda'
        if args.gpus is not None:
            try:
                args.gpus = [int(s) for s in args.gpus.split(',')]
            except ValueError:
                raise ValueError(
                    'ERROR: Argument --gpus must be a comma-separated list of integers only'
                )
            available_gpus = torch.cuda.device_count()
            for dev_id in args.gpus:
                if dev_id >= available_gpus:
                    raise ValueError(
                        'ERROR: GPU device ID {0} requested, but only {1} devices available'
                        .format(dev_id, available_gpus))
            # Set default device in case the first one on the list != 0
            torch.cuda.set_device(args.gpus[0])

    # Infer the dataset from the model name
    # TODO
    args.dataset = 'coco'
    # args.num_classes = 21  # wc -l ~/data/VOC2012/voc-model-labels.txt

    if args.load_vgg19 and args.arch != 'vgg19':
        raise ValueError(
            '``load_vgg19`` should be set only when vgg19 is used')

    model = create_pose_estimation_model(args.pretrained,
                                         args.dataset,
                                         args.arch,
                                         load_vgg19=args.load_vgg19,
                                         parallel=not args.load_serialized,
                                         device_ids=args.gpus)
    compression_scheduler = None
    # Create a couple of logging backends.  TensorBoardLogger writes log files in a format
    # that can be read by Google's Tensor Board.  PythonLogger writes to the Python logger.
    tflogger = TensorBoardLogger(msglogger.logdir)
    pylogger = PythonLogger(msglogger)

    # <editor-fold desc=">>> Load Model">

    # We can optionally resume from a checkpoint
    optimizer = None
    if args.resumed_checkpoint_path:
        model, compression_scheduler, optimizer, start_epoch = apputils.load_checkpoint(
            model, args.resumed_checkpoint_path, model_device=args.device)
    elif args.load_model_path:
        model = apputils.load_lean_checkpoint(model,
                                              args.load_model_path,
                                              model_device=args.device)

    if args.reset_optimizer:
        start_epoch = 0
        if optimizer is not None:
            optimizer = None
            msglogger.info(
                '\nreset_optimizer flag set: Overriding resumed optimizer and resetting epoch count to 0'
            )
    # </editor-fold>

    # Define loss function (criterion)
    # get_loss(saved_for_loss, heat_temp, heat_weight,vec_temp, vec_weight)
    criterion = {
        'shufflenetv2': shufflenetv2_get_loss,
        'vgg19': vgg19_get_loss,
        'hourglass': hourglass_get_loss,
    }[args.arch]

    if optimizer is None:
        trainable_vars = [
            param for param in model.parameters() if param.requires_grad
        ]
        optimizer = torch.optim.SGD(trainable_vars,
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
        msglogger.info('Optimizer Type: %s', type(optimizer))
        msglogger.info('Optimizer Args: %s', optimizer.defaults)

    # TODO: load lr_scheduler
    lr_scheduler = ReduceLROnPlateau(optimizer,
                                     mode='min',
                                     factor=0.8,
                                     patience=5,
                                     verbose=True,
                                     threshold=0.0001,
                                     threshold_mode='rel',
                                     cooldown=3,
                                     min_lr=0,
                                     eps=1e-08)

    if args.AMC:
        return automated_deep_compression(model, criterion, optimizer,
                                          pylogger, args)
    if args.greedy:
        return greedy(model, criterion, optimizer, pylogger, args)

    # This sample application can be invoked to produce various summary reports.
    if args.summary:
        for summary in args.summary:
            distiller.model_summary(model, summary, args.dataset)
        return

    if args.export_onnx is not None:
        return distiller.export_img_classifier_to_onnx(model,
                                                       os.path.join(
                                                           msglogger.logdir,
                                                           args.export_onnx),
                                                       args.dataset,
                                                       add_softmax=True,
                                                       verbose=False)

    if args.qe_calibration:
        return acts_quant_stats_collection(model, criterion, pylogger, args)

    if args.activation_histograms:
        return acts_histogram_collection(model, criterion, pylogger, args)

    print('Building activations_collectors...')
    activations_collectors = create_activation_stats_collectors(
        model, *args.activation_stats)

    # Load the datasets: the dataset to load is inferred from the model name passed
    # in args.arch.  The default dataset is ImageNet, but if args.arch contains the
    # substring "_cifar", then cifar10 is used.
    print('Loading data...')
    train_loader, val_loader, test_loader, _ = load_data(args)
    msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d',
                   len(train_loader.sampler), len(val_loader.sampler),
                   len(test_loader.sampler))

    if args.sensitivity is not None:
        sensitivities = np.arange(args.sensitivity_range[0],
                                  args.sensitivity_range[1],
                                  args.sensitivity_range[2])
        return sensitivity_analysis(model, criterion, test_loader, pylogger,
                                    args, sensitivities)

    if args.evaluate:
        return evaluate_model(model, criterion, test_loader, pylogger,
                              activations_collectors, args,
                              compression_scheduler)

    if args.compress:
        # The main use-case for this sample application is CNN compression. Compression
        # requires a compression schedule configuration file in YAML.
        compression_scheduler = distiller.file_config(
            model, optimizer, args.compress, compression_scheduler,
            (start_epoch - 1) if args.resumed_checkpoint_path else None)
        # Model is re-transferred to GPU in case parameters were added (e.g. PACTQuantizer)
        model.to(args.device)
    elif compression_scheduler is None:
        compression_scheduler = distiller.CompressionScheduler(model)

    if args.thinnify:
        # zeros_mask_dict = distiller.create_model_masks_dict(model)
        assert args.resumed_checkpoint_path is not None, \
            "You must use --resume-from to provide a checkpoint file to thinnify"
        distiller.remove_filters(model,
                                 compression_scheduler.zeros_mask_dict,
                                 args.arch,
                                 args.dataset,
                                 optimizer=None)
        apputils.save_checkpoint(0,
                                 args.arch,
                                 model,
                                 optimizer=None,
                                 scheduler=compression_scheduler,
                                 name="{}_thinned".format(
                                     args.resumed_checkpoint_path.replace(
                                         ".pth.tar", "")),
                                 dir=msglogger.logdir)
        print(
            "Note: your model may have collapsed to random inference, so you may want to fine-tune"
        )
        return

    if start_epoch >= ending_epoch:
        msglogger.error(
            'epoch count is too low, starting epoch is {} but total epochs set to {}'
            .format(start_epoch, ending_epoch))
        raise ValueError('Epochs parameter is too low. Nothing to do.')

    for epoch in range(start_epoch, ending_epoch):
        # This is the main training loop.
        msglogger.info('\n')
        if compression_scheduler:
            compression_scheduler.on_epoch_begin(
                epoch,
                metrics=(total_loss if (epoch != start_epoch) else 10**6))

        # Train for one epoch
        with collectors_context(activations_collectors["train"]) as collectors:
            train(train_loader,
                  model,
                  criterion,
                  optimizer,
                  epoch,
                  compression_scheduler,
                  loggers=[tflogger, pylogger],
                  args=args)
            distiller.log_weights_sparsity(model,
                                           epoch,
                                           loggers=[tflogger, pylogger])
            distiller.log_activation_statsitics(
                epoch,
                "train",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            if args.masks_sparsity:
                msglogger.info(
                    distiller.masks_sparsity_tbl_summary(
                        model, compression_scheduler))

        # evaluate on validation set
        with collectors_context(activations_collectors["valid"]) as collectors:
            loss = validate(val_loader, model, criterion, [pylogger], args,
                            epoch)
            distiller.log_activation_statsitics(
                epoch,
                "valid",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            save_collectors_data(collectors, msglogger.logdir)

        lr_scheduler.step(loss)

        stats = ('Performance/Validation/', OrderedDict([('Loss', loss)]))
        distiller.log_training_progress(stats,
                                        None,
                                        epoch,
                                        steps_completed=0,
                                        total_steps=1,
                                        log_freq=1,
                                        loggers=[tflogger])

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch, optimizer)

        # Update the list of top scores achieved so far, and save the checkpoint
        update_training_scores_history(perf_scores_history, model, loss, epoch,
                                       args.num_best_scores)
        is_best = epoch == perf_scores_history[0].epoch
        checkpoint_extras = {
            'current_loss': loss,
            'best_loss': perf_scores_history[0].loss,
            'best_epoch': perf_scores_history[0].epoch
        }
        apputils.save_checkpoint(epoch,
                                 args.arch,
                                 model,
                                 optimizer=optimizer,
                                 scheduler=compression_scheduler,
                                 extras=checkpoint_extras,
                                 is_best=is_best,
                                 name=args.name,
                                 dir=msglogger.logdir)

    # Finally run results on the test set
    test(test_loader,
         model,
         criterion, [pylogger],
         activations_collectors,
         args=args)
Example #9
0
                              compression_scheduler)

    if args.compress:
        # The main use-case for this sample application is CNN compression. Compression
        # requires a compression schedule configuration file in YAML.
        compression_scheduler = distiller.file_config(model, optimizer, args.compress, compression_scheduler,
            (start_epoch-1) if args.resumed_checkpoint_path else None)
        # Model is re-transferred to GPU in case parameters were added (e.g. PACTQuantizer)
        model.to(args.device)
    elif compression_scheduler is None:
        compression_scheduler = distiller.CompressionScheduler(model)

    if args.thinnify:
        #zeros_mask_dict = distiller.create_model_masks_dict(model)
        assert args.resumed_checkpoint_path is not None, "You must use --resume-from to provide a checkpoint file to thinnify"
        distiller.remove_filters(model, compression_scheduler.zeros_mask_dict, args.arch, args.dataset, optimizer=None)
        apputils.save_checkpoint(0, args.arch, model, optimizer=None, scheduler=compression_scheduler,
                                 name="{}_thinned".format(args.resumed_checkpoint_path.replace(".pth.tar", "")), dir=msglogger.logdir)
        print("Note: your model may have collapsed to random inference, so you may want to fine-tune")
        return

    args.kd_policy = None
    if args.kd_teacher:
        teacher = create_model(args.kd_pretrained, args.dataset, args.kd_teacher, device_ids=args.gpus)
        if args.kd_resume:
            teacher = apputils.load_lean_checkpoint(teacher, args.kd_resume)
        dlw = distiller.DistillationLossWeights(args.kd_distill_wt, args.kd_student_wt, args.kd_teacher_wt)
        args.kd_policy = distiller.KnowledgeDistillationPolicy(model, teacher, args.kd_temp, dlw)
        compression_scheduler.add_policy(args.kd_policy, starting_epoch=args.kd_start_epoch, ending_epoch=args.epochs,
                                         frequency=1)
Example #10
0
def main():
    script_dir = os.path.dirname(__file__)
    module_path = os.path.abspath(os.path.join(script_dir, '..', '..'))
    global msglogger

    # Parse arguments
    args = parser.get_parser().parse_args()

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    msglogger = apputils.config_pylogger(
        os.path.join(script_dir, 'logging.conf'), args.name, args.output_dir)

    # Log various details about the execution environment.  It is sometimes useful
    # to refer to past experiment executions and this information may be useful.
    # 记录有关执行环境的各种详细信息。有时是有用的
    # 参考过去的实验执行,这些信息可能有用。
    apputils.log_execution_env_state(args.compress,
                                     msglogger.logdir,
                                     gitroot=module_path)
    msglogger.debug("Distiller: %s", distiller.__version__)

    start_epoch = 0
    perf_scores_history = []
    if args.deterministic:
        # Experiment reproducibility is sometimes important.  Pete Warden expounded about this
        # in his blog: https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/
        # In Pytorch, support for deterministic execution is still a bit clunky.
        if args.workers > 1:
            msglogger.error(
                'ERROR: Setting --deterministic requires setting --workers/-j to 0 or 1'
            )  # 错误:设置--确定性要求将--workers/-j设置为0或1
            exit(1)  # 正常退出程序
        # Use a well-known seed, for repeatability of experiments 使用一种众所周知的种子,用于实验的重复性。
        distiller.set_deterministic()
    else:
        # This issue: https://github.com/pytorch/pytorch/issues/3659
        # Implies that cudnn.benchmark should respect cudnn.deterministic, but empirically we see that
        # results are not re-produced when benchmark is set. So enabling only if deterministic mode disabled.
        cudnn.benchmark = True

    if args.cpu or not torch.cuda.is_available():
        # Set GPU index to -1 if using CPU
        args.device = 'cpu'
        args.gpus = -1
    else:
        args.device = 'cuda'
        if args.gpus is not None:
            try:
                args.gpus = [int(s) for s in args.gpus.split(',')]
            except ValueError:
                msglogger.error(
                    'ERROR: Argument --gpus must be a comma-separated list of integers only'
                )
                exit(1)
            available_gpus = torch.cuda.device_count()
            for dev_id in args.gpus:
                if dev_id >= available_gpus:
                    msglogger.error(
                        'ERROR: GPU device ID {0} requested, but only {1} devices available'
                        .format(dev_id, available_gpus))
                    exit(1)
            # Set default device in case the first one on the list != 0
            torch.cuda.set_device(args.gpus[0])

    # Infer the dataset from the model name
    args.dataset = 'cousm'

    if args.earlyexit_thresholds:
        args.num_exits = len(args.earlyexit_thresholds) + 1
        args.loss_exits = [0] * args.num_exits
        args.losses_exits = []
        args.exiterrors = []

    # Create the model
    model = ResNet152()
    # model = torch.nn.DataParallel(model, device_ids=args.gpus) # 并行GPU
    model.to(args.device)
    compression_scheduler = None  # 压缩调度
    # Create a couple of logging backends.  TensorBoardLogger writes log files in a format
    # that can be read by Google's Tensor Board.  PythonLogger writes to the Python logger.
    # 创建两个日志后端 TensorBoardLogger以Google的Tensor板可以读取的格式写入日志文件。python logger将写入python记录器。
    tflogger = TensorBoardLogger(msglogger.logdir)
    pylogger = PythonLogger(msglogger)

    # capture thresholds for early-exit training
    if args.earlyexit_thresholds:
        msglogger.info('=> using early-exit threshold values of %s',
                       args.earlyexit_thresholds)

    # We can optionally resume from a checkpoint
    if args.resume:  # 加载训练模型
        # checkpoint = torch.load(args.resume)
        # model.load_state_dict(checkpoint['state_dict'])
        model, compression_scheduler, start_epoch = apputils.load_checkpoint(
            model, chkpt_file=args.resume)
        model.to(args.device)

    # Define loss function (criterion) and optimizer  # 定义损失函数和优化器SGD
    criterion = nn.CrossEntropyLoss().to(args.device)

    # optimizer = torch.optim.SGD(model.fc.parameters(), lr=args.lr,
    #                             momentum=args.momentum,
    #                             weight_decay=args.weight_decay)
    optimizer = torch.optim.Adam(model.model.fc.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)
    msglogger.info('Optimizer Type: %s', type(optimizer))
    msglogger.info('Optimizer Args: %s', optimizer.defaults)

    if args.AMC:  # 自动化的深层压缩
        return automated_deep_compression(model, criterion, optimizer,
                                          pylogger, args)
    if args.greedy:  # 贪婪的
        return greedy(model, criterion, optimizer, pylogger, args)

    # This sample application can be invoked to produce various summary reports. # 可以调用此示例应用程序来生成各种摘要报告。
    if args.summary:
        return summarize_model(model, args.dataset, which_summary=args.summary)
    # 激活统计收集器
    activations_collectors = create_activation_stats_collectors(
        model, *args.activation_stats)

    if args.qe_calibration:
        msglogger.info('Quantization calibration stats collection enabled:')
        msglogger.info(
            '\tStats will be collected for {:.1%} of test dataset'.format(
                args.qe_calibration))
        msglogger.info(
            '\tSetting constant seeds and converting model to serialized execution'
        )
        distiller.set_deterministic()
        model = distiller.make_non_parallel_copy(model)
        activations_collectors.update(
            create_quantization_stats_collector(model))  # 量化统计收集器
        args.evaluate = True
        args.effective_test_size = args.qe_calibration

    # Load the datasets: the dataset to load is inferred from the model name passed
    # in args.arch.  The default dataset is ImageNet, but if args.arch contains the
    # substring "_cifar", then cifar10 is used.
    # 加载数据集:从传递的模型名称推断要加载的数据集

    train_loader, val_loader, test_loader, _ = get_data_loaders(
        datasets_fn, r'/home/tian/Desktop/image_yasuo', args.batch_size,
        args.workers, args.validation_split, args.deterministic,
        args.effective_train_size, args.effective_valid_size,
        args.effective_test_size)
    msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d',
                   len(train_loader.sampler), len(val_loader.sampler),
                   len(test_loader.sampler))
    # 可以调用此示例应用程序来对模型执行敏感性分析。输出保存到csv和png。
    if args.sensitivity is not None:
        sensitivities = np.arange(args.sensitivity_range[0],
                                  args.sensitivity_range[1],
                                  args.sensitivity_range[2])
        return sensitivity_analysis(model, criterion, test_loader, pylogger,
                                    args, sensitivities)

    if args.evaluate:
        return evaluate_model(model, criterion, test_loader, pylogger,
                              activations_collectors, args,
                              compression_scheduler)

    if args.compress:
        # The main use-case for this sample application is CNN compression. Compression
        # requires a compression schedule configuration file in YAML.
        # #这个示例应用程序的主要用例是CNN压缩
        # #需要yaml中的压缩计划配置文件。
        compression_scheduler = distiller.file_config(model, optimizer,
                                                      args.compress,
                                                      compression_scheduler)
        # Model is re-transferred to GPU in case parameters were added (e.g. PACTQuantizer)
        # 如果添加了参数(如PactQualifier),则模型会重新传输到GPU。
        model.to(args.device)
    elif compression_scheduler is None:
        compression_scheduler = distiller.CompressionScheduler(model)  # 压缩计划程序

    if args.thinnify:
        # zeros_mask_dict = distiller.create_model_masks_dict(model)
        assert args.resume is not None, "You must use --resume to provide a checkpoint file to thinnify"  # 必须使用--resume提供检查点文件以细化
        distiller.remove_filters(model,
                                 compression_scheduler.zeros_mask_dict,
                                 args.arch,
                                 args.dataset,
                                 optimizer=None)
        apputils.save_checkpoint(0,
                                 args.arch,
                                 model,
                                 optimizer=None,
                                 scheduler=compression_scheduler,
                                 name="{}_thinned".format(
                                     args.resume.replace(".pth.tar", "")),
                                 dir=msglogger.logdir)
        print(
            "Note: your model may have collapsed to random inference, so you may want to fine-tune"
        )  # 注意:您的模型可能已折叠为随机推理,因此您可能需要对其进行微调。
        return

    args.kd_policy = None  # 蒸馏
    if args.kd_teacher:
        teacher = create_model(args.kd_pretrained,
                               args.dataset,
                               args.kd_teacher,
                               device_ids=args.gpus)
        if args.kd_resume:
            teacher, _, _ = apputils.load_checkpoint(teacher,
                                                     chkpt_file=args.kd_resume)
        dlw = distiller.DistillationLossWeights(args.kd_distill_wt,
                                                args.kd_student_wt,
                                                args.kd_teacher_wt)
        args.kd_policy = distiller.KnowledgeDistillationPolicy(
            model, teacher, args.kd_temp, dlw)
        compression_scheduler.add_policy(args.kd_policy,
                                         starting_epoch=args.kd_start_epoch,
                                         ending_epoch=args.epochs,
                                         frequency=1)

        msglogger.info('\nStudent-Teacher knowledge distillation enabled:')
        msglogger.info('\tTeacher Model: %s', args.kd_teacher)
        msglogger.info('\tTemperature: %s', args.kd_temp)
        msglogger.info('\tLoss Weights (distillation | student | teacher): %s',
                       ' | '.join(['{:.2f}'.format(val) for val in dlw]))
        msglogger.info('\tStarting from Epoch: %s', args.kd_start_epoch)
    lr = args.lr
    lr_decay = 0.5
    for epoch in range(start_epoch, args.epochs):
        # This is the main training loop.
        msglogger.info('\n')
        if compression_scheduler:
            compression_scheduler.on_epoch_begin(epoch)

        # Train for one epoch
        with collectors_context(activations_collectors["train"]) as collectors:
            train(train_loader,
                  model,
                  criterion,
                  optimizer,
                  epoch,
                  compression_scheduler,
                  loggers=[tflogger, pylogger],
                  args=args)
            distiller.log_weights_sparsity(model,
                                           epoch,
                                           loggers=[tflogger, pylogger])
            distiller.log_activation_statsitics(
                epoch,
                "train",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            if args.masks_sparsity:  # 打印掩盖稀疏表 在end of each epoch
                msglogger.info(
                    distiller.masks_sparsity_tbl_summary(
                        model, compression_scheduler))

        # evaluate on validation set
        with collectors_context(activations_collectors["valid"]) as collectors:
            top1, top5, vloss = validate(val_loader, model, criterion,
                                         [pylogger], args, epoch)
            distiller.log_activation_statsitics(
                epoch,
                "valid",
                loggers=[tflogger],
                collector=collectors["sparsity"])
            save_collectors_data(collectors, msglogger.logdir)

        stats = ('Peformance/Validation/',
                 OrderedDict([('Loss', vloss), ('Top1', top1),
                              ('Top5', top5)]))
        distiller.log_training_progress(stats,
                                        None,
                                        epoch,
                                        steps_completed=0,
                                        total_steps=1,
                                        log_freq=1,
                                        loggers=[tflogger])

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch, optimizer)

        # Update the list of top scores achieved so far, and save the checkpoint # 更新到目前为止获得的最高分数列表,并保存检查点
        sparsity = distiller.model_sparsity(model)
        perf_scores_history.append(
            distiller.MutableNamedTuple({
                'sparsity': sparsity,
                'top1': top1,
                'top5': top5,
                'epoch': epoch
            }))
        # Keep perf_scores_history sorted from best to worst
        # Sort by sparsity as main sort key, then sort by top1, top5 and epoch
        # 保持绩效分数历史记录从最好到最差的排序
        # 按稀疏度排序为主排序键,然后按top1、top5、epoch排序
        perf_scores_history.sort(key=operator.attrgetter(
            'sparsity', 'top1', 'top5', 'epoch'),
                                 reverse=True)
        for score in perf_scores_history[:args.num_best_scores]:
            msglogger.info(
                '==> Best [Top1: %.3f   Top5: %.3f   Sparsity: %.2f on epoch: %d]',
                score.top1, score.top5, score.sparsity, score.epoch)

        is_best = epoch == perf_scores_history[0].epoch
        apputils.save_checkpoint(epoch, args.arch, model, optimizer,
                                 compression_scheduler,
                                 perf_scores_history[0].top1, is_best,
                                 args.name, msglogger.logdir)
        if not is_best:
            lr = lr * lr_decay
            # 当loss大于上一次loss,降低学习率
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

    # Finally run results on the test set # 最后在测试集上运行结果
    test(test_loader,
         model,
         criterion, [pylogger],
         activations_collectors,
         args=args)