def uniform_hypothesis(distribution: dist.Distribution, size: int): sample = distribution.create_sample(size) characteristics = Characteristics(sample) hypothesis = Hypothesis() hyp_distribution = dist.UniformDistribution(characteristics.min(), characteristics.max()) hypothesis.check_hypothesis(sample, hyp_distribution)
def main(): size = 100 normal_distribution = dist.NormalDistribution(0, 1) print('Normal for Normal') normal_hypothesis(normal_distribution, size) size = 20 laplace_distribution = dist.LaplaceDistribution(0, 1 / (2**0.5)) uniform_distribution = dist.UniformDistribution(-3**0.5, 3**0.5) print('Laplace for Normal') normal_hypothesis(laplace_distribution, size) print('Uniform for Normal') normal_hypothesis(uniform_distribution, size) print('Normal for Laplace') laplace_hypothesis(normal_distribution, size) print('Normal for Uniform') uniform_hypothesis(normal_distribution, size) return 0
def test_uniform_incorrect_lowest(self): test_class = dis.UniformDistribution() self.assertRaises(Exception, test_class.set_variables, -1, 2, 3, 4, 5)
def test_uniform_five_to_ten(self): test_class = dis.UniformDistribution() test_class.set_variables(5, 10) self.assertTrue(5.0 <= test_class.bootstrap() <= 10.0)
def test_uniform_eleven_constant(self): test_class = dis.UniformDistribution() test_class.set_variables(11, 11) self.assertEqual(test_class.bootstrap(), 11.0)
def test_uniform_five_constant(self): test_class = dis.UniformDistribution() test_class.set_variables(5, 5, 3, 4, 5) self.assertEqual(test_class.bootstrap(), 5.0)
def test_uniform_incorrect_multiplication_value(self): test_class = dis.UniformDistribution() self.assertRaises(Exception, test_class.set_variables, 1, 2, 3, -4, 5)