def mc_sample(self, nruns): """Monte carlo sampled parameter values Return a defined set (nruns values) of Monte Carlo sampled parameter values from the parameter distribution. Parameters ---------- nruns : int Number of Monte Carlo samples to take Returns -------- mcsample : array Numpy array with the specified number of Monte Carlo samples """ if self.pardistribution == 'randomUniform': return randomUniform(left=self.min, right=self.max, rnsize=nruns) # if self.pardistribution == 'discreteUniform': # return randomUniform(left = self.min, right = self.max, # rnsize = nruns) elif self.pardistribution == 'randomTriangular': return randomTriangular(left = self.min, mode = self.mode, right = self.max, rnsize = nruns) elif self.pardistribution == 'randomTrapezoidal': return randomTrapezoidal(left = self.min, mode1 = self.mode1, mode2 = self.mode2, right = self.max, rnsize = nruns) elif self.pardistribution == 'randomNormal': return randomNormal(mu = self.mu, sigma = self.sigma, rnsize = nruns) elif self.pardistribution == 'randomLogNormal': return randomLogNormal(mu = self.mu, sigma = self.sigma, rnsize = nruns)
def avalue(self): """return single sampled value Return a single Monte Carlo sampled parameter value from the parameter distribution. """ if self.pardistribution == 'randomUniform': return randomUniform(left=self.min, right=self.max, rnsize=1)[0] elif self.pardistribution == 'randomTriangular': return randomTriangular(left=self.min, mode=self.mode, right=self.max, rnsize=1)[0] elif self.pardistribution == 'randomTrapezoidal': return randomTrapezoidal(left=self.min, mode1=self.mode1, mode2=self.mode2, right=self.max, rnsize=1)[0] elif self.pardistribution == 'randomNormal': return randomNormal(mu=self.mu, sigma=self.sigma, rnsize=1)[0] elif self.pardistribution == 'randomLogNormal': return randomLogNormal(mu=self.mu, sigma=self.sigma, rnsize=1)[0]
def mc_sample(self, nruns): """Monte carlo sampled parameter values Return a defined set (nruns values) of Monte Carlo sampled parameter values from the parameter distribution. Parameters ---------- nruns : int Number of Monte Carlo samples to take Returns -------- mcsample : array Numpy array with the specified number of Monte Carlo samples """ if self.pardistribution == 'randomUniform': return randomUniform(left=self.min, right=self.max, rnsize=nruns) # if self.pardistribution == 'discreteUniform': # return randomUniform(left = self.min, right = self.max, # rnsize = nruns) elif self.pardistribution == 'randomTriangular': return randomTriangular(left=self.min, mode=self.mode, right=self.max, rnsize=nruns) elif self.pardistribution == 'randomTrapezoidal': return randomTrapezoidal(left=self.min, mode1=self.mode1, mode2=self.mode2, right=self.max, rnsize=nruns) elif self.pardistribution == 'randomNormal': return randomNormal(mu=self.mu, sigma=self.sigma, rnsize=nruns) elif self.pardistribution == 'randomLogNormal': return randomLogNormal(mu=self.mu, sigma=self.sigma, rnsize=nruns)