def evaluate(self): """Evaluate.""" eval_env = VecFrameStack(self.env, self.frame_stack) self.pi.eval() misc.set_env_to_eval_mode(eval_env) # Eval policy os.makedirs(os.path.join(self.logdir, 'eval'), exist_ok=True) outfile = os.path.join(self.logdir, 'eval', self.ckptr.format.format(self.t) + '.json') stats = rl_evaluate(eval_env, self.pi, self.eval_num_episodes, outfile, self.device) logger.add_scalar('eval/mean_episode_reward', stats['mean_reward'], self.t, time.time()) logger.add_scalar('eval/mean_episode_length', stats['mean_length'], self.t, time.time()) # Record policy os.makedirs(os.path.join(self.logdir, 'video'), exist_ok=True) outfile = os.path.join(self.logdir, 'video', self.ckptr.format.format(self.t) + '.mp4') rl_record(eval_env, self.pi, self.record_num_episodes, outfile, self.device) self.pi.train() misc.set_env_to_train_mode(self.env) self.data_manager.manual_reset()
def make_atari_env(game_name, nenv=1, seed=0, sticky_actions=True, timelimit=True, noop=False, frameskip=4, episode_life=False, clip_rewards=True, frame_stack=1, scale=False, timelimit_maxsteps=None): """Create an Atari environment.""" id = game_name + 'NoFrameskip' id += '-v0' if sticky_actions else '-v4' def _env(rank): def _thunk(): env = gym.make(id) if not timelimit: env = env.env elif timelimit_maxsteps: env = TimeLimit(env.env, timelimit_maxsteps) assert 'NoFrameskip' in env.spec.id if noop: env = atari_wrappers.NoopResetEnv(env, noop_max=30) env = atari_wrappers.MaxAndSkipEnv(env, skip=frameskip) env = StepOnEndOfLifeEnv(env) env = EpisodeInfo(env) env.seed(seed + rank) env = atari_wrappers.wrap_deepmind(env, episode_life=episode_life, clip_rewards=clip_rewards, frame_stack=False, scale=scale) env = ImageTranspose(env) return env return _thunk if nenv > 1: env = SubprocVecEnv([_env(i) for i in range(nenv)], context='fork') else: env = DummyVecEnv([_env(0)]) if frame_stack > 1: env = VecFrameStack(env, frame_stack) return env
def __init__(self, logdir, env_fn, policy_fn, qf_fn, nenv=1, optimizer=torch.optim.Adam, buffer_size=10000, frame_stack=1, learning_starts=1000, update_period=1, batch_size=256, policy_lr=1e-3, qf_lr=1e-3, gamma=0.99, target_update_period=1, policy_update_period=1, target_smoothing_coef=0.005, alpha=0.2, automatic_entropy_tuning=True, target_entropy=None, gpu=True, eval_num_episodes=1, record_num_episodes=1, log_period=1000): """Init.""" self.logdir = logdir self.ckptr = Checkpointer(os.path.join(logdir, 'ckpts')) self.env_fn = env_fn self.nenv = nenv self.eval_num_episodes = eval_num_episodes self.record_num_episodes = record_num_episodes self.gamma = gamma self.buffer_size = buffer_size self.frame_stack = frame_stack self.learning_starts = learning_starts self.update_period = update_period self.batch_size = batch_size if target_update_period < self.update_period: self.target_update_period = self.update_period else: self.target_update_period = target_update_period - ( target_update_period % self.update_period) if policy_update_period < self.update_period: self.policy_update_period = self.update_period else: self.policy_update_period = policy_update_period - ( policy_update_period % self.update_period) self.target_smoothing_coef = target_smoothing_coef self.log_period = log_period self.device = torch.device( 'cuda:0' if gpu and torch.cuda.is_available() else 'cpu') self.env = VecEpisodeLogger(env_fn(nenv=nenv)) eval_env = VecFrameStack(self.env, self.frame_stack) self.pi = policy_fn(eval_env) self.qf1 = qf_fn(eval_env) self.qf2 = qf_fn(eval_env) self.target_qf1 = qf_fn(eval_env) self.target_qf2 = qf_fn(eval_env) self.pi.to(self.device) self.qf1.to(self.device) self.qf2.to(self.device) self.target_qf1.to(self.device) self.target_qf2.to(self.device) self.opt_pi = optimizer(self.pi.parameters(), lr=policy_lr) self.opt_qf1 = optimizer(self.qf1.parameters(), lr=qf_lr) self.opt_qf2 = optimizer(self.qf2.parameters(), lr=qf_lr) self.target_qf1.load_state_dict(self.qf1.state_dict()) self.target_qf2.load_state_dict(self.qf2.state_dict()) self.buffer = BatchedReplayBuffer( * [ReplayBuffer(buffer_size, frame_stack) for _ in range(self.nenv)]) self.data_manager = ReplayBufferDataManager(self.buffer, self.env, SACActor(self.pi), self.device, self.learning_starts, self.update_period) self.alpha = alpha self.automatic_entropy_tuning = automatic_entropy_tuning if self.automatic_entropy_tuning: if target_entropy: self.target_entropy = target_entropy else: target_entropies = nest.map_structure( lambda space: -np.prod(space.shape).item(), misc.unpack_space(self.env.action_space)) self.target_entropy = sum(nest.flatten(target_entropies)) self.log_alpha = torch.tensor(np.log([self.alpha]), requires_grad=True, device=self.device, dtype=torch.float32) self.opt_alpha = optimizer([self.log_alpha], lr=policy_lr) else: self.target_entropy = None self.log_alpha = None self.opt_alpha = None self.mse_loss = torch.nn.MSELoss() self.t = 0
def __init__(self, logdir, env_fn, qf_fn, nenv=1, optimizer=torch.optim.RMSprop, buffer_size=100000, frame_stack=1, learning_starts=10000, update_period=1, gamma=0.99, huber_loss=True, exploration_timesteps=1000000, final_eps=0.1, eval_eps=0.05, target_update_period=10000, batch_size=32, gpu=True, eval_num_episodes=1, record_num_episodes=1, log_period=10): """Init.""" self.logdir = logdir self.ckptr = Checkpointer(os.path.join(logdir, 'ckpts')) self.env_fn = env_fn self.nenv = nenv self.eval_num_episodes = eval_num_episodes self.record_num_episodes = record_num_episodes self.gamma = gamma self.frame_stack = frame_stack self.buffer_size = buffer_size self.batch_size = batch_size self.learning_starts = learning_starts self.update_period = update_period self.eval_eps = eval_eps self.target_update_period = target_update_period - ( target_update_period % self.update_period) self.log_period = log_period self.device = torch.device( 'cuda:0' if gpu and torch.cuda.is_available() else 'cpu') self.env = VecEpisodeLogger(env_fn(nenv=nenv)) stacked_env = VecFrameStack(env_fn(nenv=nenv), self.frame_stack) self.qf = qf_fn(stacked_env).to(self.device) self.qf_targ = qf_fn(stacked_env).to(self.device) self.opt = optimizer(self.qf.parameters()) if huber_loss: self.criterion = torch.nn.SmoothL1Loss(reduction='none') else: self.criterion = torch.nn.MSELoss(reduction='none') self.eps_schedule = LinearSchedule(exploration_timesteps, final_eps, 1.0) self._actor = EpsilonGreedyActor(self.qf, self.eps_schedule, self.env.action_space) self.buffer = ReplayBuffer(self.buffer_size, self.frame_stack) self.data_manager = ReplayBufferDataManager(self.buffer, self.env, self._actor, self.device, self.learning_starts, self.update_period) self.t = 0
def __init__(self, logdir, env_fn, policy_fn, qf_fn, nenv=1, optimizer=torch.optim.Adam, buffer_size=10000, frame_stack=1, learning_starts=1000, update_period=1, batch_size=256, policy_lr=1e-4, qf_lr=1e-3, qf_weight_decay=0.01, gamma=0.99, noise_theta=0.15, noise_sigma=0.2, noise_sigma_final=0.01, noise_decay_period=10000, target_update_period=1, target_smoothing_coef=0.005, reward_scale=1, gpu=True, eval_num_episodes=1, record_num_episodes=1, log_period=1000): """Init.""" self.logdir = logdir self.ckptr = Checkpointer(os.path.join(logdir, 'ckpts')) self.env_fn = env_fn self.nenv = nenv self.eval_num_episodes = eval_num_episodes self.record_num_episodes = record_num_episodes self.gamma = gamma self.buffer_size = buffer_size self.frame_stack = frame_stack self.learning_starts = learning_starts self.update_period = update_period self.batch_size = batch_size if target_update_period < self.update_period: self.target_update_period = self.update_period else: self.target_update_period = target_update_period - ( target_update_period % self.update_period) self.reward_scale = reward_scale self.target_smoothing_coef = target_smoothing_coef self.log_period = log_period self.device = torch.device( 'cuda:0' if gpu and torch.cuda.is_available() else 'cpu') self.t = 0 self.env = VecEpisodeLogger(env_fn(nenv=nenv)) self.policy_fn = policy_fn self.qf_fn = qf_fn eval_env = VecFrameStack(self.env, self.frame_stack) self.pi = policy_fn(eval_env) self.qf = qf_fn(eval_env) self.target_pi = policy_fn(eval_env) self.target_qf = qf_fn(eval_env) self.pi.to(self.device) self.qf.to(self.device) self.target_pi.to(self.device) self.target_qf.to(self.device) self.optimizer = optimizer self.policy_lr = policy_lr self.qf_lr = qf_lr self.qf_weight_decay = qf_weight_decay self.opt_pi = optimizer(self.pi.parameters(), lr=policy_lr) self.opt_qf = optimizer(self.qf.parameters(), lr=qf_lr, weight_decay=qf_weight_decay) self.target_pi.load_state_dict(self.pi.state_dict()) self.target_qf.load_state_dict(self.qf.state_dict()) self.noise_schedule = LinearSchedule(noise_decay_period, noise_sigma_final, noise_sigma) self._actor = DDPGActor(self.pi, self.env.action_space, noise_theta, self.noise_schedule.value(self.t)) self.buffer = ReplayBuffer(buffer_size, frame_stack) self.data_manager = ReplayBufferDataManager(self.buffer, self.env, self._actor, self.device, self.learning_starts, self.update_period) self.qf_criterion = torch.nn.MSELoss() if self.env.action_space.__class__.__name__ == 'Discrete': raise ValueError("Action space must be continuous!")
def __init__(self, logdir, env_fn, policy_fn, qf_fn, nenv=1, optimizer=torch.optim.Adam, buffer_size=int(1e6), frame_stack=1, learning_starts=10000, update_period=1, batch_size=256, lr=3e-4, policy_update_period=2, target_smoothing_coef=0.005, reward_scale=1, gamma=0.99, exploration_noise=0.1, policy_noise=0.2, policy_noise_clip=0.5, gpu=True, eval_num_episodes=1, record_num_episodes=1, log_period=1000): """Init.""" self.logdir = logdir self.ckptr = Checkpointer(os.path.join(logdir, 'ckpts')) self.env_fn = env_fn self.nenv = nenv self.eval_num_episodes = eval_num_episodes self.record_num_episodes = record_num_episodes self.gamma = gamma self.buffer_size = buffer_size self.batch_size = batch_size self.frame_stack = frame_stack self.learning_starts = learning_starts self.update_period = update_period if policy_update_period < self.update_period: self.policy_update_period = self.update_period else: self.policy_update_period = policy_update_period - ( policy_update_period % self.update_period) self.reward_scale = reward_scale self.target_smoothing_coef = target_smoothing_coef self.exploration_noise = exploration_noise self.policy_noise = policy_noise self.policy_noise_clip = policy_noise_clip self.log_period = log_period self.device = torch.device( 'cuda:0' if gpu and torch.cuda.is_available() else 'cpu') self.policy_fn = policy_fn self.qf_fn = qf_fn self.env = VecEpisodeLogger(env_fn(nenv=nenv)) eval_env = VecFrameStack(self.env, self.frame_stack) self.pi = policy_fn(eval_env) self.qf1 = qf_fn(eval_env) self.qf2 = qf_fn(eval_env) self.target_pi = policy_fn(eval_env) self.target_qf1 = qf_fn(eval_env) self.target_qf2 = qf_fn(eval_env) self.pi.to(self.device) self.qf1.to(self.device) self.qf2.to(self.device) self.target_pi.to(self.device) self.target_qf1.to(self.device) self.target_qf2.to(self.device) self.optimizer = optimizer self.lr = lr self.opt_pi = optimizer(self.pi.parameters(), lr=lr) self.opt_qf = optimizer(list(self.qf1.parameters()) + list(self.qf2.parameters()), lr=lr) self.target_pi.load_state_dict(self.pi.state_dict()) self.target_qf1.load_state_dict(self.qf1.state_dict()) self.target_qf2.load_state_dict(self.qf2.state_dict()) self._actor = TD3Actor(self.pi, self.env.action_space, exploration_noise) self.buffer = ReplayBuffer(buffer_size, frame_stack) self.data_manager = ReplayBufferDataManager(self.buffer, self.env, self._actor, self.device, self.learning_starts, self.update_period) self.qf_criterion = torch.nn.MSELoss() if self.env.action_space.__class__.__name__ == 'Discrete': raise ValueError("Action space must be continuous!") self.low = torch.from_numpy(self.env.action_space.low).to(self.device) self.high = torch.from_numpy(self.env.action_space.high).to( self.device) self.t = 0
def __init__(self, logdir, env_fn, policy_fn, qf_fn, vf_fn, nenv=1, optimizer=torch.optim.Adam, buffer_size=10000, frame_stack=1, learning_starts=1000, update_period=1, batch_size=256, policy_lr=1e-3, qf_lr=1e-3, vf_lr=1e-3, policy_mean_reg_weight=1e-3, gamma=0.99, target_update_period=1, policy_update_period=1, target_smoothing_coef=0.005, automatic_entropy_tuning=True, reparameterization_trick=True, target_entropy=None, reward_scale=1, gpu=True, eval_num_episodes=1, record_num_episodes=1, log_period=1000): """Init.""" self.logdir = logdir self.ckptr = Checkpointer(os.path.join(logdir, 'ckpts')) self.env_fn = env_fn self.nenv = nenv self.eval_num_episodes = eval_num_episodes self.record_num_episodes = record_num_episodes self.gamma = gamma self.buffer_size = buffer_size self.frame_stack = frame_stack self.learning_starts = learning_starts self.update_period = update_period self.batch_size = batch_size if target_update_period < self.update_period: self.target_update_period = self.update_period else: self.target_update_period = target_update_period - ( target_update_period % self.update_period) if policy_update_period < self.update_period: self.policy_update_period = self.update_period else: self.policy_update_period = policy_update_period - ( policy_update_period % self.update_period) self.rsample = reparameterization_trick self.reward_scale = reward_scale self.target_smoothing_coef = target_smoothing_coef self.log_period = log_period self.device = torch.device('cuda:0' if gpu and torch.cuda.is_available() else 'cpu') self.env = VecEpisodeLogger(env_fn(nenv=nenv)) eval_env = VecFrameStack(self.env, self.frame_stack) self.pi = policy_fn(eval_env) self.qf1 = qf_fn(eval_env) self.qf2 = qf_fn(eval_env) self.vf = vf_fn(eval_env) self.target_vf = vf_fn(eval_env) self.pi.to(self.device) self.qf1.to(self.device) self.qf2.to(self.device) self.vf.to(self.device) self.target_vf.to(self.device) self.opt_pi = optimizer(self.pi.parameters(), lr=policy_lr) self.opt_qf1 = optimizer(self.qf1.parameters(), lr=qf_lr) self.opt_qf2 = optimizer(self.qf2.parameters(), lr=qf_lr) self.opt_vf = optimizer(self.vf.parameters(), lr=vf_lr) self.policy_mean_reg_weight = policy_mean_reg_weight self.target_vf.load_state_dict(self.vf.state_dict()) self.buffer = ReplayBuffer(buffer_size, frame_stack) self.data_manager = ReplayBufferDataManager(self.buffer, self.env, SACActor(self.pi), self.device, self.learning_starts, self.update_period) self.discrete = self.env.action_space.__class__.__name__ == 'Discrete' self.automatic_entropy_tuning = automatic_entropy_tuning if self.automatic_entropy_tuning: if target_entropy: self.target_entropy = target_entropy else: # heuristic value from Tuomas if self.discrete: self.target_entropy = np.log(1.5) else: self.target_entropy = -np.prod( self.env.action_space.shape).item() self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device) self.opt_alpha = optimizer([self.log_alpha], lr=policy_lr) else: self.target_entropy = None self.log_alpha = None self.opt_alpha = None self.qf_criterion = torch.nn.MSELoss() self.vf_criterion = torch.nn.MSELoss() self.t = 0