def instances_to_coco_json(instances, img_id):
    """
    Dump an "Instances" object to a COCO-format json that's used for evaluation.
    Args:
        instances (Instances):
        img_id (int): the image id
    Returns:
        list[dict]: list of json annotations in COCO format.
    """
    num_instance = len(instances)
    if num_instance == 0:
        return []

    boxes = instances.pred_boxes.tensor.numpy()
    boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
    boxes = boxes.tolist()
    scores = instances.scores.tolist()
    classes = instances.pred_classes.tolist()

    has_mask = instances.has("pred_masks")
    if has_mask:
        # use RLE to encode the masks, because they are too large and takes memory
        # since this evaluator stores outputs of the entire dataset
        rles = [
            mask_util.encode(
                np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
            for mask in instances.pred_masks
        ]
        for rle in rles:
            # "counts" is an array encoded by mask_util as a byte-stream. Python3's
            # json writer which always produces strings cannot serialize a bytestream
            # unless you decode it. Thankfully, utf-8 works out (which is also what
            # the pycocotools/_mask.pyx does).
            rle["counts"] = rle["counts"].decode("utf-8")

    has_keypoints = instances.has("pred_keypoints")
    if has_keypoints:
        keypoints = instances.pred_keypoints

    results = []
    for k in range(num_instance):
        result = {
            "image_id": img_id,
            "category_id": classes[k],
            "bbox": boxes[k],
            "score": scores[k],
        }
        if has_mask:
            result["segmentation"] = rles[k]
        if has_keypoints:
            # In COCO annotations,
            # keypoints coordinates are pixel indices.
            # However our predictions are floating point coordinates.
            # Therefore we subtract 0.5 to be consistent with the annotation format.
            # This is the inverse of data loading logic in `datasets/coco.py`.
            keypoints[k][:, :2] -= 0.5
            result["keypoints"] = keypoints[k].flatten().tolist()
        results.append(result)
    return results
Example #2
0
def load_proposals_into_dataset(dataset_dicts, proposal_file):
    r"""
    Load precomputed object proposals into the dataset.

    The proposal file should be a pickled dict with the following keys:

    - "ids": list[int] or list[str], the image ids
    - "boxes": list[np.ndarray], each is an Nx4 array of boxes corresponding to the image id
    - "objectness_logits": list[np.ndarray], each is an N sized array of objectness scores
        corresponding to the boxes.
    - "bbox_mode": the BoxMode of the boxes array. Defaults to ``BoxMode.XYXY_ABS``.

    Args:
        dataset_dicts (list[dict]): annotations in dl_lib Dataset format.
        proposal_file (str): file path of pre-computed proposals, in pkl format.

    Returns:
        list[dict]: the same format as dataset_dicts, but added proposal field.
    """
    logger = logging.getLogger(__name__)
    logger.info("Loading proposals from: {}".format(proposal_file))

    with PathManager.open(proposal_file, "rb") as f:
        proposals = pickle.load(f, encoding="latin1")

    # Rename the key names in D1 proposal files
    rename_keys = {"indexes": "ids", "scores": "objectness_logits"}
    for key in rename_keys:
        if key in proposals:
            proposals[rename_keys[key]] = proposals.pop(key)

    # Fetch the indexes of all proposals that are in the dataset
    # Convert image_id to str since they could be int.
    img_ids = set({str(record["image_id"]) for record in dataset_dicts})
    id_to_index = {
        str(id): i
        for i, id in enumerate(proposals["ids"]) if str(id) in img_ids
    }

    # Assuming default bbox_mode of precomputed proposals are 'XYXY_ABS'
    bbox_mode = BoxMode(proposals["bbox_mode"]
                        ) if "bbox_mode" in proposals else BoxMode.XYXY_ABS

    for record in dataset_dicts:
        # Get the index of the proposal
        i = id_to_index[str(record["image_id"])]

        boxes = proposals["boxes"][i]
        objectness_logits = proposals["objectness_logits"][i]
        # Sort the proposals in descending order of the scores
        inds = objectness_logits.argsort()[::-1]
        record["proposal_boxes"] = boxes[inds]
        record["proposal_objectness_logits"] = objectness_logits[inds]
        record["proposal_bbox_mode"] = bbox_mode

    return dataset_dicts
def transform_instance_annotations(annotation,
                                   transforms,
                                   image_size,
                                   *,
                                   keypoint_hflip_indices=None):
    """
    Apply transforms to box, segmentation and keypoints annotations of a single instance.

    It will use `transforms.apply_box` for the box, and
    `transforms.apply_coords` for segmentation polygons & keypoints.
    If you need anything more specially designed for each data structure,
    you'll need to implement your own version of this function or the transforms.

    Args:
        annotation (dict): dict of instance annotations for a single instance.
            It will be modified in-place.
        transforms (TransformList):
        image_size (tuple): the height, width of the transformed image
        keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`.

    Returns:
        dict:
            the same input dict with fields "bbox", "segmentation", "keypoints"
            transformed according to `transforms`.
            The "bbox_mode" field will be set to XYXY_ABS.
    """
    bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"],
                           BoxMode.XYXY_ABS)
    # Note that bbox is 1d (per-instance bounding box)
    annotation["bbox"] = transforms.apply_box([bbox])[0]
    annotation["bbox_mode"] = BoxMode.XYXY_ABS

    if "segmentation" in annotation:
        # each instance contains 1 or more polygons
        polygons = [
            np.asarray(p).reshape(-1, 2) for p in annotation["segmentation"]
        ]
        annotation["segmentation"] = [
            p.reshape(-1) for p in transforms.apply_polygons(polygons)
        ]

    if "keypoints" in annotation:
        keypoints = transform_keypoint_annotations(annotation["keypoints"],
                                                   transforms, image_size,
                                                   keypoint_hflip_indices)
        annotation["keypoints"] = keypoints

    return annotation
Example #4
0
    def draw_dataset_dict(self, dic):
        """
        Draw annotations/segmentaions in Detectron2 Dataset format.
        Args:
            dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format.
        Returns:
            output (VisImage): image object with visualizations.
        """
        annos = dic.get("annotations", None)
        if annos:
            if "segmentation" in annos[0]:
                masks = [x["segmentation"] for x in annos]
            else:
                masks = None
            if "keypoints" in annos[0]:
                keypts = [x["keypoints"] for x in annos]
                keypts = np.array(keypts).reshape(len(annos), -1, 3)
            else:
                keypts = None

            boxes = [
                BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS)
                for x in annos
            ]

            labels = [x["category_id"] for x in annos]
            names = self.metadata.get("thing_classes", None)
            if names:
                labels = [names[i] for i in labels]
            labels = [
                "{}".format(i) + ("|crowd" if a.get("iscrowd", 0) else "")
                for i, a in zip(labels, annos)
            ]
            self.overlay_instances(labels=labels,
                                   boxes=boxes,
                                   masks=masks,
                                   keypoints=keypts)

        sem_seg = dic.get("sem_seg", None)
        if sem_seg is None and "sem_seg_file_name" in dic:
            sem_seg = cv2.imread(dic["sem_seg_file_name"],
                                 cv2.IMREAD_GRAYSCALE)
        if sem_seg is not None:
            self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.5)
        return self.output
def annotations_to_instances(annos, image_size, mask_format="polygon"):
    """
    Create an :class:`Instances` object used by the models,
    from instance annotations in the dataset dict.

    Args:
        annos (list[dict]): a list of instance annotations in one image, each
            element for one instance.
        image_size (tuple): height, width

    Returns:
        Instances:
            It will contain fields "gt_boxes", "gt_classes",
            "gt_masks", "gt_keypoints", if they can be obtained from `annos`.
            This is the format that builtin models expect.
    """
    boxes = [
        BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS)
        for obj in annos
    ]
    target = Instances(image_size)
    boxes = target.gt_boxes = Boxes(boxes)
    boxes.clip(image_size)

    classes = [obj["category_id"] for obj in annos]
    classes = torch.tensor(classes, dtype=torch.int64)
    target.gt_classes = classes

    if len(annos) and "segmentation" in annos[0]:
        polygons = [obj["segmentation"] for obj in annos]
        if mask_format == "polygon":
            masks = PolygonMasks(polygons)
        else:
            assert mask_format == "bitmask", mask_format
            masks = BitMasks.from_polygon_masks(polygons, *image_size)
        target.gt_masks = masks

    if len(annos) and "keypoints" in annos[0]:
        kpts = [obj.get("keypoints", []) for obj in annos]
        target.gt_keypoints = Keypoints(kpts)

    return target
def transform_proposals(dataset_dict, image_shape, transforms,
                        min_box_side_len, proposal_topk):
    """
    Apply transformations to the proposals in dataset_dict, if any.

    Args:
        dataset_dict (dict): a dict read from the dataset, possibly
            contains fields "proposal_boxes", "proposal_objectness_logits", "proposal_bbox_mode"
        image_shape (tuple): height, width
        transforms (TransformList):
        min_box_side_len (int): keep proposals with at least this size
        proposal_topk (int): only keep top-K scoring proposals

    The input dict is modified in-place, with abovementioned keys removed. A new
    key "proposals" will be added. Its value is an `Instances`
    object which contains the transformed proposals in its field
    "proposal_boxes" and "objectness_logits".
    """
    if "proposal_boxes" in dataset_dict:
        # Transform proposal boxes
        boxes = transforms.apply_box(
            BoxMode.convert(
                dataset_dict.pop("proposal_boxes"),
                dataset_dict.pop("proposal_bbox_mode"),
                BoxMode.XYXY_ABS,
            ))
        boxes = Boxes(boxes)
        objectness_logits = torch.as_tensor(
            dataset_dict.pop("proposal_objectness_logits").astype("float32"))

        boxes.clip(image_shape)
        keep = boxes.nonempty(threshold=min_box_side_len)
        boxes = boxes[keep]
        objectness_logits = objectness_logits[keep]

        proposals = Instances(image_shape)
        proposals.proposal_boxes = boxes[:proposal_topk]
        proposals.objectness_logits = objectness_logits[:proposal_topk]
        dataset_dict["proposals"] = proposals
def gen_crop_transform_with_instance(crop_size, image_size, instance):
    """
    Generate a CropTransform so that the cropping region contains
    the center of the given instance.

    Args:
        crop_size (tuple): h, w in pixels
        image_size (tuple): h, w
        instance (dict): an annotation dict of one instance, in dl_lib's
            dataset format.
    """
    crop_size = np.asarray(crop_size, dtype=np.int32)
    bbox = BoxMode.convert(instance["bbox"], instance["bbox_mode"],
                           BoxMode.XYXY_ABS)
    center_yx = (bbox[1] + bbox[3]) * 0.5, (bbox[0] + bbox[2]) * 0.5

    min_yx = np.maximum(np.floor(center_yx).astype(np.int32) - crop_size, 0)
    max_yx = np.maximum(np.asarray(image_size, dtype=np.int32) - crop_size, 0)
    max_yx = np.minimum(max_yx, np.ceil(center_yx).astype(np.int32))

    y0 = np.random.randint(min_yx[0], max_yx[0] + 1)
    x0 = np.random.randint(min_yx[1], max_yx[1] + 1)
    return T.CropTransform(x0, y0, crop_size[1], crop_size[0])
Example #8
0
def convert_to_coco_dict(dataset_name):
    """
    Convert a dataset in detectron2's standard format into COCO json format
    Generic dataset description can be found here:
    https://detectron2.readthedocs.io/tutorials/datasets.html#register-a-dataset
    COCO data format description can be found here:
    http://cocodataset.org/#format-data
    Args:
        dataset_name:
            name of the source dataset
            must be registered in DatastCatalog and in detectron2's standard format
    Returns:
        coco_dict: serializable dict in COCO json format
    """

    dataset_dicts = DatasetCatalog.get(dataset_name)
    categories = [{
        "id": id,
        "name": name
    } for id, name in enumerate(
        MetadataCatalog.get(dataset_name).thing_classes)]

    logger.info("Converting dataset dicts into COCO format")
    coco_images = []
    coco_annotations = []

    for image_id, image_dict in enumerate(dataset_dicts):
        coco_image = {
            "id": image_dict.get("image_id", image_id),
            "width": image_dict["width"],
            "height": image_dict["height"],
            "file_name": image_dict["file_name"],
        }
        coco_images.append(coco_image)

        anns_per_image = image_dict["annotations"]
        for annotation in anns_per_image:
            # create a new dict with only COCO fields
            coco_annotation = {}

            # COCO requirement: XYWH box format
            bbox = annotation["bbox"]
            bbox_mode = annotation["bbox_mode"]
            bbox = BoxMode.convert(bbox, bbox_mode, BoxMode.XYWH_ABS)

            # COCO requirement: instance area
            if "segmentation" in annotation:
                # Computing areas for instances by counting the pixels
                segmentation = annotation["segmentation"]
                # TODO: check segmentation type: RLE, BinaryMask or Polygon
                polygons = PolygonMasks([segmentation])
                area = polygons.area()[0].item()
            else:
                # Computing areas using bounding boxes
                bbox_xy = BoxMode.convert(bbox, BoxMode.XYWH_ABS,
                                          BoxMode.XYXY_ABS)
                area = Boxes([bbox_xy]).area()[0].item()

            if "keypoints" in annotation:
                keypoints = annotation["keypoints"]  # list[int]
                for idx, v in enumerate(keypoints):
                    if idx % 3 != 2:
                        # COCO's segmentation coordinates are floating points in [0, H or W],
                        # but keypoint coordinates are integers in [0, H-1 or W-1]
                        # For COCO format consistency we substract 0.5
                        # https://github.com/facebookresearch/detectron2/pull/175#issuecomment-551202163
                        keypoints[idx] = v - 0.5
                if "num_keypoints" in annotation:
                    num_keypoints = annotation["num_keypoints"]
                else:
                    num_keypoints = sum(kp > 0 for kp in keypoints[2::3])

            # COCO requirement:
            #   linking annotations to images
            #   "id" field must start with 1
            coco_annotation["id"] = len(coco_annotations) + 1
            coco_annotation["image_id"] = coco_image["id"]
            coco_annotation["bbox"] = [round(float(x), 3) for x in bbox]
            coco_annotation["area"] = area
            coco_annotation["category_id"] = annotation["category_id"]
            coco_annotation["iscrowd"] = annotation.get("iscrowd", 0)

            # Add optional fields
            if "keypoints" in annotation:
                coco_annotation["keypoints"] = keypoints
                coco_annotation["num_keypoints"] = num_keypoints

            if "segmentation" in annotation:
                coco_annotation["segmentation"] = annotation["segmentation"]

            coco_annotations.append(coco_annotation)

    logger.info(
        "Conversion finished, "
        f"num images: {len(coco_images)}, num annotations: {len(coco_annotations)}"
    )

    info = {
        "date_created": str(datetime.datetime.now()),
        "description":
        "Automatically generated COCO json file for Detectron2.",
    }
    coco_dict = {
        "info": info,
        "images": coco_images,
        "annotations": coco_annotations,
        "categories": categories,
        "licenses": None,
    }
    return coco_dict
def _evaluate_box_proposals(dataset_predictions,
                            coco_api,
                            thresholds=None,
                            area="all",
                            limit=None):
    """
    Evaluate detection proposal recall metrics. This function is a much
    faster alternative to the official COCO API recall evaluation code. However,
    it produces slightly different results.
    """
    # Record max overlap value for each gt box
    # Return vector of overlap values
    areas = {
        "all": 0,
        "small": 1,
        "medium": 2,
        "large": 3,
        "96-128": 4,
        "128-256": 5,
        "256-512": 6,
        "512-inf": 7,
    }
    area_ranges = [
        [0**2, 1e5**2],  # all
        [0**2, 32**2],  # small
        [32**2, 96**2],  # medium
        [96**2, 1e5**2],  # large
        [96**2, 128**2],  # 96-128
        [128**2, 256**2],  # 128-256
        [256**2, 512**2],  # 256-512
        [512**2, 1e5**2],
    ]  # 512-inf
    assert area in areas, "Unknown area range: {}".format(area)
    area_range = area_ranges[areas[area]]
    gt_overlaps = []
    num_pos = 0

    for prediction_dict in dataset_predictions:
        predictions = prediction_dict["proposals"]

        # sort predictions in descending order
        # TODO maybe remove this and make it explicit in the documentation
        inds = predictions.objectness_logits.sort(descending=True)[1]
        predictions = predictions[inds]

        ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"])
        anno = coco_api.loadAnns(ann_ids)
        gt_boxes = [
            BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
            for obj in anno if obj["iscrowd"] == 0
        ]
        gt_boxes = torch.as_tensor(gt_boxes).reshape(
            -1, 4)  # guard against no boxes
        gt_boxes = Boxes(gt_boxes)
        gt_areas = torch.as_tensor(
            [obj["area"] for obj in anno if obj["iscrowd"] == 0])

        if len(gt_boxes) == 0 or len(predictions) == 0:
            continue

        valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <=
                                                       area_range[1])
        gt_boxes = gt_boxes[valid_gt_inds]

        num_pos += len(gt_boxes)

        if len(gt_boxes) == 0:
            continue

        if limit is not None and len(predictions) > limit:
            predictions = predictions[:limit]

        overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes)

        _gt_overlaps = torch.zeros(len(gt_boxes))
        for j in range(min(len(predictions), len(gt_boxes))):
            # find which proposal box maximally covers each gt box
            # and get the iou amount of coverage for each gt box
            max_overlaps, argmax_overlaps = overlaps.max(dim=0)

            # find which gt box is 'best' covered (i.e. 'best' = most iou)
            gt_ovr, gt_ind = max_overlaps.max(dim=0)
            assert gt_ovr >= 0
            # find the proposal box that covers the best covered gt box
            box_ind = argmax_overlaps[gt_ind]
            # record the iou coverage of this gt box
            _gt_overlaps[j] = overlaps[box_ind, gt_ind]
            assert _gt_overlaps[j] == gt_ovr
            # mark the proposal box and the gt box as used
            overlaps[box_ind, :] = -1
            overlaps[:, gt_ind] = -1

        # append recorded iou coverage level
        gt_overlaps.append(_gt_overlaps)
    gt_overlaps = torch.cat(gt_overlaps, dim=0)
    gt_overlaps, _ = torch.sort(gt_overlaps)

    if thresholds is None:
        step = 0.05
        thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
    recalls = torch.zeros_like(thresholds)
    # compute recall for each iou threshold
    for i, t in enumerate(thresholds):
        recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
    # ar = 2 * np.trapz(recalls, thresholds)
    ar = recalls.mean()
    return {
        "ar": ar,
        "recalls": recalls,
        "thresholds": thresholds,
        "gt_overlaps": gt_overlaps,
        "num_pos": num_pos,
    }
def transform_instance_annotations(annotation,
                                   transforms,
                                   image_size,
                                   *,
                                   keypoint_hflip_indices=None,
                                   dot_number):
    """
    Apply transforms to box, segmentation and keypoints annotations of a single instance.

    It will use `transforms.apply_box` for the box, and
    `transforms.apply_coords` for segmentation polygons & keypoints.
    If you need anything more specially designed for each data structure,
    you'll need to implement your own version of this function or the transforms.

    Args:
        annotation (dict): dict of instance annotations for a single instance.
            It will be modified in-place.
        transforms (TransformList):
        image_size (tuple): the height, width of the transformed image
        keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`.

    Returns:
        dict:
            the same input dict with fields "bbox", "segmentation", "keypoints"
            transformed according to `transforms`.
            The "bbox_mode" field will be set to XYXY_ABS.
    """
    bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"],
                           BoxMode.XYXY_ABS)
    # Note that bbox is 1d (per-instance bounding box)
    annotation["bbox"] = transforms.apply_box([bbox])[0]
    annotation["bbox_mode"] = BoxMode.XYXY_ABS

    if "segmentation" in annotation:
        # each instance contains 1 or more polygons
        dot_counts = [len(i) // 2 for i in annotation["segmentation"]]
        dot_gap = [
            i // dot_number if i >= dot_number else 1 for i in dot_counts
        ]
        x = [
            i[0::(2 * j)] for i, j in zip(annotation["segmentation"], dot_gap)
        ]
        y = [
            i[1::(2 * j)] for i, j in zip(annotation["segmentation"], dot_gap)
        ]
        # x = [[i[:dot_number]] if len(i) >= dot_number else [i + [-1] * (dot_number - len(i))] for i in x]
        # y = [[i[:dot_number]] if len(i) >= dot_number else [i + [-1] * (dot_number - len(i))] for i in y]
        x = [[i[:dot_number]] for i in x]
        y = [[i[:dot_number]] for i in y]
        polygons = [
            np.concatenate([np.asarray(i), np.asarray(j)], axis=0).T
            for i, j in zip(x, y)
        ]
        # polygons = [np.asarray(p).reshape(-1, 2) for p in annotation["segmentation"]]
        annotation["segmentation"] = [
            p.reshape(-1) for p in transforms.apply_polygons(polygons)
        ]

    if "keypoints" in annotation:
        keypoints = transform_keypoint_annotations(annotation["keypoints"],
                                                   transforms, image_size,
                                                   keypoint_hflip_indices)
        annotation["keypoints"] = keypoints

    return annotation