Example #1
0
    def after_step(self):
        next_iter = self.trainer.iter + 1
        is_final = next_iter == self.trainer.max_iter
        if is_final or (self._period > 0 and next_iter % self._period == 0):
            results = self._func()

            if results:
                assert isinstance(
                    results, dict
                ), "Eval function must return a dict. Got {} instead.".format(
                    results)

                flattened_results = flatten_results_dict(results)
                for k, v in flattened_results.items():
                    try:
                        v = float(v)
                    except Exception:
                        raise ValueError(
                            "[EvalHook] eval_function should return a nested dict of float. "
                            "Got '{}: {}' instead.".format(k, v))
                self.trainer.storage.put_scalars(**flattened_results,
                                                 smoothing_hint=False)

            # Evaluation may take different time among workers.
            # A barrier make them start the next iteration together.
            comm.synchronize()
Example #2
0
def _distributed_worker(
    local_rank, main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args
):
    assert torch.cuda.is_available(), "cuda is not available. Please check your installation."
    global_rank = machine_rank * num_gpus_per_machine + local_rank
    try:
        dist.init_process_group(
            backend="NCCL", init_method=dist_url, world_size=world_size, rank=global_rank
        )
    except Exception as e:
        logger = logging.getLogger(__name__)
        logger.error("Process group URL: {}".format(dist_url))
        raise e
    # synchronize is needed here to prevent a possible timeout after calling init_process_group
    # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172
    comm.synchronize()

    assert num_gpus_per_machine <= torch.cuda.device_count()
    torch.cuda.set_device(local_rank)

    # Setup the local process group (which contains ranks within the same machine)
    assert comm._LOCAL_PROCESS_GROUP is None
    num_machines = world_size // num_gpus_per_machine
    for i in range(num_machines):
        ranks_on_i = list(range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine))
        pg = dist.new_group(ranks_on_i)
        if i == machine_rank:
            comm._LOCAL_PROCESS_GROUP = pg

    main_func(*args)
    def evaluate(self):
        if self._distributed:
            comm.synchronize()
            self._predictions = comm.gather(self._predictions, dst=0)
            self._predictions = list(itertools.chain(*self._predictions))

            if not comm.is_main_process():
                return {}

        if len(self._predictions) == 0:
            self._logger.warning(
                "[COCOEvaluator] Did not receive valid predictions.")
            return {}

        if self._output_dir:
            PathManager.mkdirs(self._output_dir)
            file_path = os.path.join(self._output_dir,
                                     "instances_predictions.pth")
            with PathManager.open(file_path, "wb") as f:
                torch.save(self._predictions, f)

        self._results = OrderedDict()
        if "proposals" in self._predictions[0]:
            self._eval_box_proposals()
        if "instances" in self._predictions[0]:
            self._eval_predictions(set(self._tasks))
        # Copy so the caller can do whatever with results
        return copy.deepcopy(self._results)
    def evaluate(self):
        """
        Returns:
            dict: has a key "segm", whose value is a dict of "AP" and "AP50".
        """
        comm.synchronize()
        if comm.get_rank() > 0:
            return
        os.environ["CITYSCAPES_DATASET"] = os.path.abspath(
            os.path.join(self._metadata.gt_dir, "..", ".."))
        # Load the Cityscapes eval script *after* setting the required env var,
        # since the script reads CITYSCAPES_DATASET into global variables at load time.
        import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as cityscapes_eval

        self._logger.info("Evaluating results under {} ...".format(
            self._temp_dir))

        # set some global states in cityscapes evaluation API, before evaluating
        cityscapes_eval.args.predictionPath = os.path.abspath(self._temp_dir)
        cityscapes_eval.args.predictionWalk = None
        cityscapes_eval.args.JSONOutput = False
        cityscapes_eval.args.colorized = False
        cityscapes_eval.args.gtInstancesFile = os.path.join(
            self._temp_dir, "gtInstances.json")

        # These lines are adopted from
        # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalInstanceLevelSemanticLabeling.py # noqa
        groundTruthImgList = glob.glob(cityscapes_eval.args.groundTruthSearch)
        assert len(
            groundTruthImgList
        ), "Cannot find any ground truth images to use for evaluation. Searched for: {}".format(
            cityscapes_eval.args.groundTruthSearch)
        predictionImgList = []
        for gt in groundTruthImgList:
            predictionImgList.append(
                cityscapes_eval.getPrediction(gt, cityscapes_eval.args))
        results = cityscapes_eval.evaluateImgLists(
            predictionImgList, groundTruthImgList,
            cityscapes_eval.args)["averages"]

        ret = OrderedDict()
        ret["segm"] = {
            "AP": results["allAp"] * 100,
            "AP50": results["allAp50%"] * 100
        }
        self._working_dir.cleanup()
        return ret
Example #5
0
    def evaluate(self):
        """
        Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval):
        * Mean intersection-over-union averaged across classes (mIoU)
        * Frequency Weighted IoU (fwIoU)
        * Mean pixel accuracy averaged across classes (mACC)
        * Pixel Accuracy (pACC)
        """
        if self._distributed:
            synchronize()
            conf_matrix_list = all_gather(self._conf_matrix)
            self._predictions = all_gather(self._predictions)
            self._predictions = list(itertools.chain(*self._predictions))
            self._real_flops = all_gather(self._real_flops)
            self._real_flops = list(itertools.chain(*self._real_flops))
            self._expt_flops = all_gather(self._expt_flops)
            self._expt_flops = list(itertools.chain(*self._expt_flops))
            if not is_main_process():
                return

            self._conf_matrix = np.zeros_like(self._conf_matrix)
            for conf_matrix in conf_matrix_list:
                self._conf_matrix += conf_matrix

        if self._output_dir:
            PathManager.mkdirs(self._output_dir)
            file_path = os.path.join(self._output_dir,
                                     "sem_seg_predictions.json")
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(self._predictions))

        acc = np.zeros(self._num_classes, dtype=np.float)
        iou = np.zeros(self._num_classes, dtype=np.float)
        tp = self._conf_matrix.diagonal()[:-1].astype(np.float)
        pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(np.float)
        class_weights = pos_gt / np.sum(pos_gt)
        pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(np.float)
        acc_valid = pos_gt > 0
        acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid]
        iou_valid = (pos_gt + pos_pred) > 0
        union = pos_gt + pos_pred - tp
        iou[acc_valid] = tp[acc_valid] / union[acc_valid]
        macc = np.sum(acc) / np.sum(acc_valid)
        miou = np.sum(iou) / np.sum(iou_valid)
        fiou = np.sum(iou * class_weights)
        pacc = np.sum(tp) / np.sum(pos_gt)

        res = {}
        res["mIoU"] = 100 * miou
        res["fwIoU"] = 100 * fiou
        res["mACC"] = 100 * macc
        res["pACC"] = 100 * pacc

        # add flops calculation
        if len(self._real_flops) > 0 and len(self._expt_flops) > 0:
            res["mean_real_flops"] = (sum(self._real_flops) /
                                      len(self._real_flops)) / 1e3
            res["max_real_flops"] = max(self._real_flops) / 1e3
            res["min_real_flops"] = min(self._real_flops) / 1e3
            res["mean_expt_flops"] = (sum(self._expt_flops) /
                                      len(self._expt_flops)) / 1e3
            res["max_expt_flops"] = max(self._expt_flops) / 1e3
            res["min_expt_flops"] = min(self._expt_flops) / 1e3

        if self._output_dir:
            file_path = os.path.join(self._output_dir,
                                     "sem_seg_evaluation.pth")
            with PathManager.open(file_path, "wb") as f:
                torch.save(res, f)
        results = OrderedDict({"sem_seg": res})
        self._logger.info(results)
        return results
Example #6
0
def do_train(cfg, model, resume=False):
    model.train()
    optimizer = build_optimizer(cfg, model)
    scheduler = build_lr_scheduler(cfg, optimizer)

    checkpointer = DetectionCheckpointer(model,
                                         cfg.OUTPUT_DIR,
                                         optimizer=optimizer,
                                         scheduler=scheduler)
    start_iter = (checkpointer.resume_or_load(
        cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1)
    max_iter = cfg.SOLVER.MAX_ITER

    periodic_checkpointer = PeriodicCheckpointer(checkpointer,
                                                 cfg.SOLVER.CHECKPOINT_PERIOD,
                                                 max_iter=max_iter)

    writers = ([
        CommonMetricPrinter(max_iter),
        JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")),
        TensorboardXWriter(cfg.OUTPUT_DIR),
    ] if comm.is_main_process() else [])

    # compared to "train_net.py", we do not support accurate timing and
    # precise BN here, because they are not trivial to implement
    data_loader = build_detection_train_loader(cfg)
    logger.info("Starting training from iteration {}".format(start_iter))
    with EventStorage(start_iter) as storage:
        for data, iteration in zip(data_loader, range(start_iter, max_iter)):
            iteration = iteration + 1
            storage.step()

            loss_dict = model(data)
            losses = sum(loss for loss in loss_dict.values())
            assert torch.isfinite(losses).all(), loss_dict

            loss_dict_reduced = {
                k: v.item()
                for k, v in comm.reduce_dict(loss_dict).items()
            }
            losses_reduced = sum(loss for loss in loss_dict_reduced.values())
            if comm.is_main_process():
                storage.put_scalars(total_loss=losses_reduced,
                                    **loss_dict_reduced)

            optimizer.zero_grad()
            losses.backward()
            optimizer.step()
            storage.put_scalar("lr",
                               optimizer.param_groups[0]["lr"],
                               smoothing_hint=False)
            scheduler.step()

            if (cfg.TEST.EVAL_PERIOD > 0
                    and iteration % cfg.TEST.EVAL_PERIOD == 0
                    and iteration != max_iter):
                do_test(cfg, model)
                # Compared to "train_net.py", the test results are not dumped to EventStorage
                comm.synchronize()

            if iteration - start_iter > 5 and (iteration % 20 == 0
                                               or iteration == max_iter):
                for writer in writers:
                    writer.write()
            periodic_checkpointer.step(iteration)