Example #1
0
    # Optionally flip webcam image, probably not relevant
    # img = cv2.flip(img, 1)

    # Optionally display webcam image with opencv
    # cv2.imshow('Action Unit Heatmaps - Press Q to exit!', img)
    # if cv2.waitKey(1) & 0xFF == ord('q'):
    # 	break

    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    nframes += 1

    pred, map, img = AUdetector.detectAU(img)
    for j in range(0, 5):
        resized_map = dlib.resize_image(map[j, :, :].cpu().data.numpy(),
                                        rows=256,
                                        cols=256)

        # Update face image subplot
        implots[2 * j].set_data(img)

        # Update heatmap subplot
        implots[2 * j + 1].set_data(resized_map)

        # Set correct heatmap limits
        resized_map_flat = resized_map.flatten()
        implots[2 * j + 1].set_clim(min(resized_map_flat),
                                    max(resized_map_flat))

# To plot heatmaps the original way - looks identical to the new way!
# ax = fig.add_subplot(5,2,2*j+1)
Example #2
0
                    num_label_images.append(cnt)
                cnt = 0
                print("new label: " + name)
                label = name
                labels.append(label)
                os.mkdir(os.path.join(dst, label))
                num_labels += 1

            image = dlib.load_rgb_image(os.path.join(path, f))
            print("processing " + f + " ..." + " (" + label + ")")

            #size image down
            div = (max(image.shape[0], image.shape[1]) / 800)
            new_wid = (int)(image.shape[0] / div)
            new_height = (int)(image.shape[1] / div)
            image = dlib.resize_image(image, new_wid, new_height)

            dets = face_detector(image, 1)

            if (len(dets) == 0):
                print("#### Failed to extract face: no face detected ####\n")
                failed_paths = failed_paths + str(
                    fail_cnt) + ". " + os.path.join(
                        path, f) + " -- no face detected. \n"
                fail_cnt = fail_cnt + 1
            elif (len(dets) > 1):
                print(
                    "#### Failed to extract face: too many faces in this picture ####\n"
                )
                failed_paths = failed_paths + str(
                    fail_cnt) + ". " + os.path.join(
# to find face landmarks so we can precisely localize the face, and finally the
# face recognition model.
detector = dlib.get_frontal_face_detector()
sp = dlib.shape_predictor(predictor_path)
facerec = dlib.face_recognition_model_v1(face_rec_model_path)

descriptors = []
images = []

# Now find all the faces and compute 128D face descriptors for each face.
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")) + glob.glob(os.path.join(faces_folder_path, "*.JPG")):
    print("Processing file: {}".format(f))
    img = dlib.load_rgb_image(f)
    if img.shape[0] > 800 :
        scale = 800.0/ img.shape[0]
        img = dlib.resize_image(img, scale)

    # Ask the detector to find the bounding boxes of each face. The 1 in the
    # second argument indicates that we should upsample the image 1 time. This
    # will make everything bigger and allow us to detect more faces.
    dets = detector(img, 1)
    print("Number of faces detected: {}".format(len(dets)))

    # Now process each face we found.
    for k, d in enumerate(dets):
        # Get the landmarks/parts for the face in box d.
        shape = sp(img, d)

        # Compute the 128D vector that describes the face in img identified by
        # shape.  
        face_descriptor = facerec.compute_face_descriptor(img, shape)
Example #4
0
def main(config):
    detector_ori = dlib.get_frontal_face_detector()

    # open the image file
    try:
        img = dlib.load_rgb_image(config.input_path)
    except Exception as e:
        print("While processing, " + str(e) + '\n')
        exit()

    # If the resolution is less than 128x128 then skip
    img_height = img.shape[0]
    img_width = img.shape[1]
    if img_height < 128 or img_width < 128:
        print("While processing, image size too small" + '\n')
        exit()

    # find one face that best matches and finalize the image cropping size
    max_object = None

    dets, score, idx = detector_ori.run(img, 1, -1)
    max_confi = 0.6

    if len(dets) == 0:
        print("While processing, face not detected" + '\n')
        exit()

    for i, d in enumerate(dets):
        print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
            i, d.left(), d.top(), d.right(), d.bottom()))
        if max_confi < score[i]:
            max_confi = score[i]
            max_object = d

    d = max_object

    if d == None:
        print("While processing, face not detected" + '\n')
        exit()
    d_width = int((d.right() - d.left() + 1) // 2)
    d_height = int((d.bottom() - d.top() + 1) // 2)

    crop_top = d.top() - d_height
    crop_bottom = d.bottom() + d_height
    crop_left = d.left() - d_width
    crop_right = d.right() + d_width

    img_out_lenght = min(crop_top, crop_left, img_height - crop_bottom,
                         img_width - crop_right)

    if img_out_lenght < -d_width / 2:
        print("While processing, face image over index" + '\n')
        exit()

    if img_out_lenght < 0:
        crop_top = crop_top - img_out_lenght
        crop_bottom = crop_bottom + img_out_lenght
        crop_left = crop_left - img_out_lenght
        crop_right = crop_right + img_out_lenght

    # Make the cropped and resized image from the original one
    img = img[crop_top:crop_bottom, crop_left:crop_right]
    if img.shape[0] != img.shape[1]:
        final_size = min(img.shape[0], img.shape[1])
        img = img[:final_size, :final_size]
    img = dlib.resize_image(img, config.image_size / img.shape[0])

    dlib.save_image(img, config.save_path)
Example #5
0
 def f(img):
     # get proportional width x height
     wx, wy = _better_proportion(img_x, img_y, img.shape[0], img.shape[1])
     # resize proportionally and add black padding
     return padding(img_x, img_y, dlib.resize_image(img, wx, wy))
Example #6
0
            ExifTags.TAGS[k]: v
            for k, v in img._getexif().items() if k in ExifTags.TAGS
        }
    except:
        exif = {'Orientation': 1}
    if not 'Orientation' in exif.keys():
        exif['Orientation'] = 1
    degree = dic_exif[exif['Orientation']]
    # 圖片選轉 , expand 要設定 (不然旋轉後會有黑邊)
    img_clip = img.rotate(degree, expand=1)
    # 轉換成 opencv image
    img = np.array(img_clip)
    # Convert RGB to BGR
    #img = img[:, :, ::-1].copy()

    img = dlib.resize_image(img, scale=1024 / img.shape[1])
    # The 1 in the second argument indicates that we should upsample the image
    # 1 time.  This will make everything bigger and allow us to detect more
    # faces.
    dets = detector(img, 1)
    print("Number of faces detected: {}".format(len(dets)))
    for i, d in enumerate(dets):
        print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
            i, d.left(), d.top(), d.right(), d.bottom()))

    win.clear_overlay()
    win.set_image(img)
    win.add_overlay(dets)
    dlib.hit_enter_to_continue()

# Finally, if you really want to you can ask the detector to tell you the score
Example #7
0
def crop_image(file):
    detector_ori = dlib.get_frontal_face_detector()
    # open the image file
    try:
        img = io.imread(file)
    except Exception as e:
        message = "While processing, " + str(e)
        return message

    # If the resolution is less than 128x128 then skip
    img_height = img.shape[0]
    img_width = img.shape[1]
    if img_height < 128 or img_width < 128:
        message = "While processing, image size too small"
        return message

    # find one face that best matches and finalize the image cropping size
    max_object = None

    dets, score, idx = detector_ori.run(img, 1, -1)
    max_confi = 0.6

    if len(dets) == 0:
        message = "While processing, face not detected"
        return message

    for i, d in enumerate(dets):
        if max_confi < score[i]:
            max_confi = score[i]
            max_object = d

    d = max_object

    if d == None:
        message = "While processing, face not detected"
        return message
    d_width = int((d.right() - d.left() + 1) // 2)
    d_height = int((d.bottom() - d.top() + 1) // 2)

    crop_top = d.top() - d_height
    crop_bottom = d.bottom() + d_height
    crop_left = d.left() - d_width
    crop_right = d.right() + d_width

    img_out_lenght = min(crop_top, crop_left, img_height - crop_bottom,
                         img_width - crop_right)

    if img_out_lenght < -d_width / 2:
        message = "While processing, face image over index"
        return message

    if img_out_lenght < 0:
        crop_top = crop_top - img_out_lenght
        crop_bottom = crop_bottom + img_out_lenght
        crop_left = crop_left - img_out_lenght
        crop_right = crop_right + img_out_lenght

    # Make the cropped and resized image from the original one
    img = img[crop_top:crop_bottom, crop_left:crop_right]
    if img.shape[0] != img.shape[1]:
        final_size = min(img.shape[0], img.shape[1])
        img = img[:final_size, :final_size]
    img = dlib.resize_image(img, 128 / img.shape[0])

    return img
def main():
    verbose = True
    if len(sys.argv) > 1 and sys.argv[1] == '-q':
        verbose = False

    print(' ** Loading model ... ')
    AUdetector = AUmaps.AUdetector('shape_predictor_68_face_landmarks.dat',
                                   enable_cuda=True)
    cam = cv2.VideoCapture(0)

    fig = plt.figure(figsize=plt.figaspect(2.5))
    fig.canvas.mpl_connect('close_event', handle_close)
    axs = fig.subplots(5, 2)

    # Init subplots and images within
    implots = []
    autitles = ['AU06', 'AU10', 'AU12', 'AU14', 'AU17']
    axc = 0
    axt = 0
    for ax in axs.reshape(-1):
        ax.axis('off')
        ax.set_title(autitles[axc])
        if (axt % 2) != 0:
            axc += 1
        axt += 1
        implots.append(ax.imshow(np.zeros((256, 256))))

    clearscr = True
    try:
        global keep
        tstart_time = time.time()
        nframes = 0
        while keep:
            start_time = time.time()
            _, img = cam.read()

            # Downscale webcam image 2x to speed things up
            img = cv2.resize(img, None, fx=0.5, fy=0.5)

            # Optionally flip webcam image, probably not relevant
            # img = cv2.flip(img, 1)

            # Optionally display webcam image with opencv
            # cv2.imshow('Action Unit Heatmaps - Press Q to exit!', img)
            # if cv2.waitKey(1) & 0xFF == ord('q'):
            # 	break

            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            nframes += 1

            pred, map, img = AUdetector.detectAU(img)

            if len(pred) == 0:
                sys.stdout.write(
                    "\r |   FALSE    |   --   |   --   |   --   |   --   |   --   |     --      |"
                )
                sys.stdout.flush()
                continue

            if clearscr:
                clearscr = False
                if platform.system() is 'Windows':
                    os.system('cls')
                else:
                    os.system('clear')
                # Print AU description: https://www.cs.cmu.edu/~face/facs.htm
                print('')
                print(' ** AU06 : Cheek Raiser')
                print(' ** AU10 : Upper Lip Raiser')
                print(' ** AU12 : Lip Corner Puller (Smile)')
                print(' ** AU14 : Dimpler')
                print(' ** AU17 : Chin Raiser')

                # Print table hat
                sys.stdout.write(
                    "  _______________________________________________________________________ \n"
                )
                sys.stdout.write(
                    " | Face Found |  AU06  |  AU10  |  AU12  |  AU14  |  AU17  | FPS Elapsed |\n"
                )

            if verbose:
                for j in range(0, 5):
                    resized_map = dlib.resize_image(
                        map[j, :, :].cpu().data.numpy(), rows=256, cols=256)

                    # Update face image subplot
                    implots[2 * j].set_data(img)

                    # Update heatmap subplot
                    implots[2 * j + 1].set_data(resized_map)

                    # Set correct heatmap limits
                    resized_map_flat = resized_map.flatten()
                    implots[2 * j + 1].set_clim(min(resized_map_flat),
                                                max(resized_map_flat))

            # To plot heatmaps the original way - looks identical to the new way!
            # ax = fig.add_subplot(5,2,2*j+1)
            # ax.imshow(resized_map)
            # ax.axis('off')

                plt.pause(0.001)
                # plt.show(block=False)
                plt.draw()

            elapsed_time = 1.0 / (time.time() - start_time)
            sys.stdout.write(
                "\r |    TRUE    | %6.3f | %6.3f | %6.3f | %6.3f | %6.3f |   %7.3f   |"
                % (pred[0], pred[1], pred[2], pred[3], pred[4], elapsed_time))
            sys.stdout.flush()

    except KeyboardInterrupt:
        pass

    # Close camera
    cam.release()

    # If webcam images shown with opencv, close window
    # cv2.destroyAllWindows()

    telapsed_time = time.time() - tstart_time
    print('\n\n ** Mean FPS Elapsed: {0:.3f} \n'.format(
        1.0 / (telapsed_time / nframes)))