def test_22(self):
     layers = [
         InputLayer(3, 4),
         Conv2d(8, 7),
         BN(),
         Dense(n=32),
         OutputLayer()
     ]
     Sequential(self.s, layers=layers, model_table='table22')
Example #2
0
    def test_mix_cnn_rnn_network(self):
        from dlpy.applications import ResNet50_Caffe
        from dlpy import Sequential
        from dlpy.blocks import Bidirectional
        # the case is to test if CNN and RNN model can be connect using functional api
        # the model_type is expected to be RNN in 19w47.
        # CNN
        model = ResNet50_Caffe(self.s)
        cnn_head = model.to_functional_model(stop_layers=model.layers[-1])
        # RNN
        model_rnn = Sequential(conn=self.s, model_table='rnn')
        model_rnn.add(Bidirectional(n=100, n_blocks=2))
        model_rnn.add(OutputLayer('fixed'))

        f_rnn = model_rnn.to_functional_model()
        # connecting
        inp = Input(**cnn_head.layers[0].config)
        x = cnn_head(inp)
        y = f_rnn(x)
        cnn_rnn = Model(self.s, inp, y)
        cnn_rnn.compile()
        # check type
        self.assertTrue(cnn_rnn.model_type == 'RNN')
        self.assertTrue(cnn_rnn.layers[-1].name == 'fixed')

        f_rnn = model_rnn.to_functional_model()
        # connecting
        inp = Input(**cnn_head.layers[0].config)
        x = cnn_head(inp)
        y = f_rnn(x)
        cnn_rnn = Model(self.s, inp, y)
        cnn_rnn.compile()
        # it should be fixed if I create f_rnn again.
        self.assertTrue(cnn_rnn.layers[-1].name == 'fixed')

        inp = Input(**cnn_head.layers[0].config)
        x = cnn_head(inp)
        y = f_rnn(x)
        cnn_rnn = Model(self.s, inp, y)
        cnn_rnn.compile()
        # it should be fixed if I create f_rnn again.
        self.assertTrue(cnn_rnn.layers[-1].name == 'fixed_2')
Example #3
0
def SequenceLabeling(conn,
                     model_table='sequence_labeling_model',
                     neurons=10,
                     n_blocks=3,
                     rnn_type='gru'):
    '''
    Generates a sequence labeling model.

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string, optional
        Specifies the name of CAS table to store the model.
    neurons : int, optional
        Specifies the number of neurons to be in each layer.
        Default: 10
    n_blocks : int, optional
        Specifies the number of bidirectional blocks to be added to the model.
        Default: 3
    rnn_type : string, optional
        Specifies the type of the rnn layer.
        Default: GRU
        Valid Values: RNN, LSTM, GRU
        
    Returns
    -------
    :class:`Sequential`

    '''

    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    if n_blocks >= 1:
        model = Sequential(conn=conn, model_table=model_table)
        model.add(
            Bidirectional(n=neurons,
                          n_blocks=n_blocks,
                          rnn_type=rnn_type,
                          name='bi_' + rnn_type + '_layer_'))
        model.add(OutputLayer())
    else:
        raise DLPyError(
            'The number of blocks for a sequence labeling model should be at least 1.'
        )

    return model
Example #4
0
def VGG19(conn,
          model_table='VGG19',
          n_classes=1000,
          n_channels=3,
          width=224,
          height=224,
          scale=1,
          random_flip=None,
          random_crop=None,
          offsets=(103.939, 116.779, 123.68),
          pre_trained_weights=False,
          pre_trained_weights_file=None,
          include_top=False,
          random_mutation=None):
    '''
    Generates a deep learning model with the VGG19 architecture.

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string, optional
        Specifies the name of CAS table to store the model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 224
    height : int, optional
        Specifies the height of the input layer.
        Default: 224
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (103.939, 116.779, 123.68)
    pre_trained_weights : bool, optional
        Specifies whether to use the pre-trained weights trained on the ImageNet data set.
        Default: False
    pre_trained_weights_file : string, optional
        Specifies the file name for the pre-trained weights.
        Must be a fully qualified file name of SAS-compatible file (e.g., *.caffemodel.h5)
        Note: Required when pre_trained_weights=True.
    include_top : bool, optional
        Specifies whether to include pre-trained weights of the top layers (i.e., the FC layers).
        Default: False
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'

    Returns
    -------
    :class:`Sequential`
        If `pre_trained_weights` is False
    :class:`Model`
        If `pre_trained_weights` is True

    References
    ----------
    https://arxiv.org/pdf/1409.1556.pdf

    '''
    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    # get all the parms passed in
    parameters = locals()

    if not pre_trained_weights:
        model = Sequential(conn=conn, model_table=model_table)

        # get the input parameters
        input_parameters = get_layer_options(input_layer_options, parameters)
        model.add(InputLayer(**input_parameters))

        model.add(Conv2d(n_filters=64, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=64, width=3, height=3, stride=1))
        model.add(Pooling(width=2, height=2, stride=2, pool='max'))

        model.add(Conv2d(n_filters=128, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=128, width=3, height=3, stride=1))
        model.add(Pooling(width=2, height=2, stride=2, pool='max'))

        model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
        model.add(Pooling(width=2, height=2, stride=2, pool='max'))

        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Pooling(width=2, height=2, stride=2, pool='max'))

        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Pooling(width=2, height=2, stride=2, pool='max'))

        model.add(Dense(n=4096, dropout=0.5))
        model.add(Dense(n=4096, dropout=0.5))

        model.add(OutputLayer(n=n_classes))

        return model

    else:
        if pre_trained_weights_file is None:
            raise DLPyError(
                '\nThe pre-trained weights file is not specified.\n'
                'Please follow the steps below to attach the pre-trained weights:\n'
                '1. Go to the website https://support.sas.com/documentation/prod-p/vdmml/zip/ '
                'and download the associated weight file.\n'
                '2. Upload the *.h5 file to '
                'a server side directory which the CAS session has access to.\n'
                '3. Specify the pre_trained_weights_file using the fully qualified server side path.'
            )

        model_cas = model_vgg19.VGG19_Model(s=conn,
                                            model_table=model_table,
                                            n_channels=n_channels,
                                            width=width,
                                            height=height,
                                            random_crop=random_crop,
                                            offsets=offsets,
                                            random_flip=random_flip,
                                            random_mutation=random_mutation)

        if include_top:
            if n_classes != 1000:
                warnings.warn(
                    'If include_top = True, n_classes will be set to 1000.',
                    RuntimeWarning)

            model = Model.from_table(model_cas)
            model.load_weights(path=pre_trained_weights_file, labels=True)
            return model

        else:

            model = Model.from_table(model_cas, display_note=False)
            model.load_weights(path=pre_trained_weights_file)

            weight_table_options = model.model_weights.to_table_params()
            weight_table_options.update(dict(where='_LayerID_<22'))
            model._retrieve_('table.partition',
                             table=weight_table_options,
                             casout=dict(
                                 replace=True,
                                 **model.model_weights.to_table_params()))
            model._retrieve_('deeplearn.removelayer',
                             model=model_table,
                             name='fc8')
            model._retrieve_('deeplearn.addlayer',
                             model=model_table,
                             name='fc8',
                             layer=dict(type='output',
                                        n=n_classes,
                                        act='softmax'),
                             srcLayers=['fc7'])
            model = Model.from_table(conn.CASTable(model_table))

            return model
Example #5
0
def VGG11(conn,
          model_table='VGG11',
          n_classes=1000,
          n_channels=3,
          width=224,
          height=224,
          scale=1,
          random_flip=None,
          random_crop=None,
          offsets=(103.939, 116.779, 123.68),
          random_mutation=None):
    '''
    Generates a deep learning model with the VGG11 architecture.

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string, optional
        Specifies the name of CAS table to store the model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 224
    height : int, optional
        Specifies the height of the input layer.
        Default: 224
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final
        input data is set after applying scaling and subtracting the
        specified offsets.
        Default: (103.939, 116.779, 123.68)
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'

    Returns
    -------
    :class:`Sequential`

    References
    ----------
    https://arxiv.org/pdf/1409.1556.pdf

    '''
    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    # get all the parms passed in
    parameters = locals()

    model = Sequential(conn=conn, model_table=model_table)

    # get the input parameters
    input_parameters = get_layer_options(input_layer_options, parameters)
    model.add(InputLayer(**input_parameters))

    model.add(Conv2d(n_filters=64, width=3, height=3, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))

    model.add(Conv2d(n_filters=128, width=3, height=3, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))

    model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
    model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))

    model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
    model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))

    model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
    model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))

    model.add(Dense(n=4096, dropout=0.5))
    model.add(Dense(n=4096, dropout=0.5))

    model.add(OutputLayer(n=n_classes))

    return model
 def test_2(self):
     layers = [InputLayer(), Dense(n=32), OutputLayer()]
     Sequential(self.s, layers=layers, model_table='table2')
Example #7
0
    def test_model13a(self):
        model = Sequential(self.s, model_table='simple_cnn')
        model.add(InputLayer(3, 224, 224))
        model.add(Conv2d(2, 3))
        model.add(Pooling(2))
        model.add(Dense(4))
        model.add(OutputLayer(n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        model.save_to_table(self.data_dir)
 def test_new_bidirectional3(self):
     model = Sequential(self.s, model_table='new_table3')
     model.add(Bidirectional(n=[10, 20, 30], n_blocks=3))
     model.add(OutputLayer())
     model.print_summary()
 def test_1(self):
     with self.assertRaises(DLPyError):
         Sequential(self.s, layers='', model_table='table1')
Example #10
0
    def test_plot_ticks(self):

        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Dense(16))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path, tmp_caslib = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={'name': 'eee', 'replace': True},
                               path=path)

        r = model1.fit(data='eee', inputs='_image_', target='_label_', lr=0.001, max_epochs=5)
        
        # Test default tick_frequency value of 1
        ax = model1.plot_training_history()
        self.assertEqual(len(ax.xaxis.majorTicks), model1.n_epochs)

        # Test even
        tick_frequency = 2
        ax = model1.plot_training_history(tick_frequency=tick_frequency)
        self.assertEqual(len(ax.xaxis.majorTicks), model1.n_epochs // tick_frequency + 1)

        # Test odd
        tick_frequency = 3
        ax = model1.plot_training_history(tick_frequency=tick_frequency)
        self.assertEqual(len(ax.xaxis.majorTicks), model1.n_epochs // tick_frequency + 1)

        # Test max
        tick_frequency = model1.n_epochs
        ax = model1.plot_training_history(tick_frequency=tick_frequency)
        self.assertEqual(len(ax.xaxis.majorTicks), model1.n_epochs // tick_frequency + 1)
        
        # Test 0 
        tick_frequency = 0
        ax = model1.plot_training_history(tick_frequency=tick_frequency)
        self.assertEqual(len(ax.xaxis.majorTicks), model1.n_epochs)

        if (caslib is not None) and tmp_caslib:
            self.s.retrieve('table.dropcaslib', message_level = 'error', caslib = caslib)
Example #11
0
    def test_stride(self):
        model = Sequential(self.s, model_table = 'Simple_CNN_3classes_cropped')
        model.add(InputLayer(1, width = 36, height = 144, #offsets = myimage.channel_means,
                             name = 'input1',
                             random_mutation = 'random',
                             random_flip = 'HV'))

        model.add(Conv2d(64, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(64, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(64, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Pooling(height = 2, width = 2, stride_vertical = 2, stride_horizontal = 1, pool = 'max'))  # 72, 36

        model.add(Conv2d(128, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(128, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(128, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Pooling(height = 2, width = 2, stride_vertical = 2, stride_horizontal = 1, pool = 'max'))  # 36*36

        model.add(Conv2d(256, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(256, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(256, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Pooling(2, pool = 'max'))  # 18 * 18

        model.add(Conv2d(512, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(512, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(512, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Pooling(2, pool = 'max'))  # 9 * 9

        model.add(Conv2d(1024, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(1024, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(1024, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Pooling(9))

        model.add(Dense(256, dropout = 0.5))
        model.add(OutputLayer(act = 'softmax', n = 3, name = 'output1'))
        self.assertEqual(model.summary['Output Size'].values[-3], (1, 1, 1024))
        model.print_summary()
        # 2d print summary numerical check
        self.assertEqual(model.summary.iloc[1, -1], 2985984)
Example #12
0
    def test_model1(self):

        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Dense(16))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path, tmp_caslib = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={'name': 'eee', 'replace': True},
                               path=path)

        r = model1.fit(data='eee', inputs='_image_', target='_label_', lr=0.001)
        if r.severity > 0:
            for msg in r.messages:
                print(msg)
        self.assertTrue(r.severity <= 1)
        
        if (caslib is not None) and tmp_caslib:
            self.s.retrieve('table.dropcaslib', message_level = 'error', caslib = caslib)
Example #13
0
    def test_model_forecast3(self):
        
        import datetime
        try:
            import pandas as pd
        except:
            unittest.TestCase.skipTest(self, "pandas not found in the libraries") 
        import numpy as np
            
        filename1 = os.path.join(os.path.dirname(__file__), 'datasources', 'timeseries_exp1.csv')
        importoptions1 = dict(filetype='delimited', delimiter=',')
        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        self.table3 = TimeseriesTable.from_localfile(self.s, filename1, importoptions=importoptions1)
        self.table3.timeseries_formatting(timeid='datetime',
                                  timeseries=['series', 'covar'],
                                  timeid_informat='ANYDTDTM19.',
                                  timeid_format='DATETIME19.')
        self.table3.timeseries_accumlation(acc_interval='day',
                                           groupby=['id1var', 'id2var'])
        self.table3.prepare_subsequences(seq_len=2,
                                         target='series',
                                         predictor_timeseries=['series', 'covar'],
                                         missing_handling='drop')
        
        valid_start = datetime.date(2015, 1, 4)
        test_start = datetime.date(2015, 1, 7)
        
        traintbl, validtbl, testtbl = self.table3.timeseries_partition(
                validation_start=valid_start, testing_start=test_start)
        
        sascode = '''
        data {};
        set {};
        drop series_lag1;
        run;
        '''.format(validtbl.name, validtbl.name)
        
        self.s.retrieve('dataStep.runCode', _messagelevel='error', code=sascode)
        
        sascode = '''
        data {};
        set {};
        drop series_lag1;
        run;
        '''.format(testtbl.name, testtbl.name)
        
        self.s.retrieve('dataStep.runCode', _messagelevel='error', code=sascode)
        
        model1 = Sequential(self.s, model_table='lstm_rnn')
        model1.add(InputLayer(std='STD'))
        model1.add(Recurrent(rnn_type='LSTM', output_type='encoding', n=15, reversed_=False))
        model1.add(OutputLayer(act='IDENTITY'))
        
        optimizer = Optimizer(algorithm=AdamSolver(learning_rate=0.01), mini_batch_size=32, 
                              seed=1234, max_epochs=10)                    
        seq_spec  = Sequence(**traintbl.sequence_opt)
        result = model1.fit(traintbl, optimizer=optimizer, 
                            sequence=seq_spec, **traintbl.inputs_target)
        
        self.assertTrue(result.severity == 0)
        
        resulttbl1 = model1.forecast(validtbl, horizon=1)
        self.assertTrue(isinstance(resulttbl1, CASTable))
        self.assertTrue(resulttbl1.shape[0]==15)
        
        local_resulttbl1 = resulttbl1.to_frame()
        unique_time = local_resulttbl1.datetime.unique()
        self.assertTrue(len(unique_time)==1)
        self.assertTrue(pd.Timestamp(unique_time[0])==datetime.datetime(2015,1,4))

        resulttbl2 = model1.forecast(validtbl, horizon=3)
        self.assertTrue(isinstance(resulttbl2, CASTable))
        self.assertTrue(resulttbl2.shape[0]==45)
        
        local_resulttbl2 = resulttbl2.to_frame()
        local_resulttbl2.sort_values(by=['id1var', 'id2var', 'datetime'], inplace=True)
        unique_time = local_resulttbl2.datetime.unique()
        self.assertTrue(len(unique_time)==3)
        for i in range(3):
            self.assertTrue(pd.Timestamp(unique_time[i])==datetime.datetime(2015,1,4+i))
        
        series_lag1 = local_resulttbl2.loc[(local_resulttbl2.id1var==1) & (local_resulttbl2.id2var==1), 
                             'series_lag1'].values
                                           
        series_lag2 = local_resulttbl2.loc[(local_resulttbl2.id1var==1) & (local_resulttbl2.id2var==1), 
                             'series_lag2'].values
        
        DL_Pred = local_resulttbl2.loc[(local_resulttbl2.id1var==1) & (local_resulttbl2.id2var==1), 
                             '_DL_Pred_'].values
                                       
        self.assertTrue(np.array_equal(series_lag1[1:3], DL_Pred[0:2]))
        self.assertTrue(series_lag2[2]==DL_Pred[0]) 
        
        with self.assertRaises(RuntimeError):
            resulttbl3 = model1.forecast(testtbl, horizon=3)
Example #14
0
 def test_model16(self):
     model = Sequential(self.s, model_table='Simple_CNN')
     model.add(layer=InputLayer(n_channels=1, height=10, width=10))
     model.add(layer=Keypoints(n=10))
     self.assertTrue(model.summary.loc[1, 'Number of Parameters'] == (1000, 10))
Example #15
0
 def test_model14(self):
     model = Sequential(self.s, model_table='Simple_CNN')
     model.add(layer=InputLayer(n_channels=1, height=10, width=10))
     model.add(layer=OutputLayer())
     model.summary
Example #16
0
    def test_model13b(self):
        model = Sequential(self.s, model_table='simple_cnn')
        model.add(layer=InputLayer(n_channels=1, height=10, width=10))
        model.add(layer=OutputLayer(n=10, full_connect=False))
        self.assertTrue(model.summary.loc[1, 'Number of Parameters'] == (0, 0))

        model1 = Sequential(self.s, model_table='simple_cnn')
        model1.add(layer=InputLayer(n_channels=1, height=10, width=10))
        model1.add(layer=OutputLayer(n=10, full_connect=True))
        self.assertTrue(model1.summary.loc[1, 'Number of Parameters'] == (1000, 10))

        model2 = Sequential(self.s, model_table='Simple_CNN')
        model2.add(layer=InputLayer(n_channels=1, height=10, width=10))
        model2.add(layer=OutputLayer(n=10, full_connect=True, include_bias=False))
        self.assertTrue(model2.summary.loc[1, 'Number of Parameters'] == (1000, 0))

        model3 = Sequential(self.s, model_table='Simple_CNN')
        model3.add(layer=InputLayer(n_channels=1, height=10, width=10))
        model3.add(layer=Conv2d(4, 3))
        model3.add(layer=OutputLayer(n=10))
        self.assertTrue(model3.summary.loc[2, 'Number of Parameters'] == (4000, 10))

        model4 = Sequential(self.s, model_table='Simple_CNN')
        model4.add(layer=InputLayer(n_channels=1, height=10, width=10))
        model4.add(layer=Conv2d(4, 3))
        model4.add(layer=OutputLayer(n=10, full_connect=False))
        self.assertTrue(model4.summary.loc[2, 'Number of Parameters'] == (0, 0))
 def test_simple_cnn_seq2(self):
     model1 = Sequential(self.s, model_table='table8')
     model1.add(InputLayer(3, 224, 224))
     model1.add(Conv2d(8, 7))
     model1.add(Pooling(2))
     model1.add(Conv2d(8, 7))
     model1.add(Pooling(2))
     model1.add(Dense(16))
     model1.add(OutputLayer(act='softmax', n=2))
     model1.print_summary()
Example #18
0
 def test_conv1d_model(self):
     # a model from https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf
     Conv1D = Conv1d
     MaxPooling1D=Pooling
     model_m = Sequential(self.s)
     model_m.add(InputLayer(width=80*3, height=1, n_channels=1))
     model_m.add(Conv1D(100, 10, act='relu'))
     model_m.add(Conv1D(100, 10, act='relu'))
     model_m.add(MaxPooling1D(3))
     model_m.add(Conv1D(160, 10, act='relu'))
     model_m.add(Conv1D(160, 10, act='relu'))
     model_m.add(GlobalAveragePooling1D(dropout=0.5))
     model_m.add(OutputLayer(n=6, act='softmax'))
     # use assertEqual to check whether the layer output size matches the expected value for MaxPooling1D
     self.assertEqual(model_m.layers[3].output_size, (1, 80, 100))
     model_m.print_summary()
     # 1d print summary numerical check
     self.assertEqual(model_m.summary.iloc[1, -1], 240000)
 def test_new_bidirectional1(self):
     model = Sequential(self.s, model_table='new_table1')
     model.add(Bidirectional(n=10))
     model.add(OutputLayer())
     model.print_summary()
Example #20
0
    def test_sequential_conversion(self):
        from dlpy.sequential import Sequential
        model1 = Sequential(self.s)
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Dense(16))
        model1.add(OutputLayer(act='softmax', n=2))

        func_model = model1.to_functional_model()
        func_model.compile()
        func_model.print_summary()
 def test_new_bidirectional6(self):
     model = Sequential(self.s, model_table='new_table5')
     model.add(InputLayer())
     r1 = Recurrent(n=10, name='rec1')
     model.add(r1)
     model.add(Bidirectional(n=20, src_layers=[r1]))
     model.add(Recurrent(n=10))
     model.add(OutputLayer())
     model.print_summary()
 def test_3(self):
     model1 = Sequential(self.s, model_table='table3')
     model1.add(InputLayer(3, 224, 224))
     model1.add(Conv2d(8, 7))
     model1.pop()
 def test_11(self):
     with self.assertRaises(DLPyError):
         model1 = Sequential(self.s, model_table='table11')
         model1.add(Conv2d(8, 7))
         model1.compile()
 def test_5(self):
     with self.assertRaises(DLPyError):
         model1 = Sequential(self.s, model_table='table5')
         model1.compile()
Example #25
0
    def test_stop_layers(self):
        from dlpy.sequential import Sequential
        model1 = Sequential(self.s)
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Dense(16))
        model1.add(OutputLayer(act='softmax', n=2))

        inputlayer = model1.layers[0]
        inp = Input(**inputlayer.config)
        func_model = model1.to_functional_model(
            stop_layers=[model1.layers[-1]])
        x = func_model(inp)
        out = Keypoints(n=10)(x)
        func_model_keypoints = Model(self.s, inp, out)
        func_model_keypoints.compile()
        func_model_keypoints.print_summary()
Example #26
0
    def test_model12(self):
        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Dense(16))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path, tmp_caslib = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={'name': 'eee', 'replace': True},
                               path=path)

        r = model1.fit(data='eee', inputs='_image_', target='_label_', save_best_weights=True)
        self.assertTrue(r.severity == 0)

        r1 = model1.fit(data='eee', inputs='_image_', target='_label_', max_epochs=3)
        self.assertTrue(r1.severity == 0)

        r2 = model1.fit(data='eee', inputs='_image_', target='_label_', max_epochs=2, save_best_weights=True)
        self.assertTrue(r2.severity == 0)

        r3 = model1.predict(data='eee', use_best_weights=True)
        self.assertTrue(r3.severity == 0)

        if (caslib is not None) and tmp_caslib:
            self.s.retrieve('table.dropcaslib', message_level = 'error', caslib = caslib)
 def test_4(self):
     model1 = Sequential(self.s, model_table='table4')
     model1.add(Conv2d(8, 7))
     model1.add(InputLayer(3, 224, 224))
     model1.switch(0, 1)
Example #28
0
def Tiny_YoloV2(conn,
                anchors,
                model_table='Tiny-Yolov2',
                n_channels=3,
                width=416,
                height=416,
                scale=1.0 / 255,
                random_mutation=None,
                act='leaky',
                act_detection='AUTO',
                softmax_for_class_prob=True,
                coord_type='YOLO',
                max_label_per_image=30,
                max_boxes=30,
                n_classes=20,
                predictions_per_grid=5,
                do_sqrt=True,
                grid_number=13,
                coord_scale=None,
                object_scale=None,
                prediction_not_a_object_scale=None,
                class_scale=None,
                detection_threshold=None,
                iou_threshold=None,
                random_boxes=False,
                match_anchor_size=None,
                num_to_force_coord=None,
                random_flip=None,
                random_crop=None):
    '''
    Generate a deep learning model with the Tiny Yolov2 architecture.

    Tiny Yolov2 is a very small model of Yolov2, so that it includes fewer
    numbers of convolutional layer and batch normalization layer.

    Parameters
    ----------
    conn : CAS
        Specifies the connection of the CAS connection.
    anchors : list
        Specifies the anchor box values.
    model_table : string, optional
        Specifies the name of CAS table to store the model.
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 416
    height : int, optional
        Specifies the height of the input layer.
        Default: 416
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1.0 / 255
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the
        input layer.
        Valid Values: 'none', 'random'
    act : string, optional
        Specifies the activation function for the batch normalization layers.
        Default: 'leaky'
    act_detection : string, optional
        Specifies the activation function for the detection layer.
        Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP
        Default: AUTO
    softmax_for_class_prob : bool, optional
        Specifies whether to perform Softmax on class probability per
        predicted object.
        Default: True
    coord_type : string, optional
        Specifies the format of how to represent bounding boxes. For example,
        a bounding box can be represented with the x and y locations of the
        top-left point as well as width and height of the rectangle.
        This format is the 'rect' format. We also support coco and yolo formats.
        Valid Values: 'rect', 'yolo', 'coco'
        Default: 'yolo'
    max_label_per_image : int, optional
        Specifies the maximum number of labels per image in the training.
        Default: 30
    max_boxes : int, optional
        Specifies the maximum number of overall predictions allowed in the
        detection layer.
        Default: 30
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 20
    predictions_per_grid : int, optional
        Specifies the amount of predictions will be done per grid.
        Default: 5
    do_sqrt : bool, optional
        Specifies whether to apply the SQRT function to width and height of
        the object for the cost function.
        Default: True
    grid_number : int, optional
        Specifies the amount of cells to be analyzed for an image. For example,
        if the value is 5, then the image will be divided into a 5 x 5 grid.
        Default: 13
    coord_scale : float, optional
        Specifies the weight for the cost function in the detection layer,
        when objects exist in the grid.
    object_scale : float, optional
        Specifies the weight for object detected for the cost function in
        the detection layer.
    prediction_not_a_object_scale : float, optional
        Specifies the weight for the cost function in the detection layer,
        when objects do not exist in the grid.
    class_scale : float, optional
        Specifies the weight for the class of object detected for the cost
        function in the detection layer.
    detection_threshold : float, optional
        Specifies the threshold for object detection.
    iou_threshold : float, optional
        Specifies the IOU Threshold of maximum suppression in object detection.
    random_boxes : bool, optional
        Randomizing boxes when loading the bounding box information.
        Default: False
    match_anchor_size : bool, optional
        Whether to force the predicted box match the anchor boxes in sizes for all predictions
    num_to_force_coord : int, optional
        The number of leading chunk of images in training when the algorithm forces predicted objects
        in each grid to be equal to the anchor box sizes, and located at the grid center
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'

    Returns
    -------
    :class:`Sequential`

    References
    ----------
    https://arxiv.org/pdf/1612.08242.pdf

    '''

    model = Sequential(conn=conn, model_table=model_table)

    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    model.add(InputLayer(**input_parameters))

    # conv1 416 448
    model.add(
        Conv2d(n_filters=16,
               width=3,
               act='identity',
               include_bias=False,
               stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv2 208 224
    model.add(
        Conv2d(n_filters=32,
               width=3,
               act='identity',
               include_bias=False,
               stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv3 104 112
    model.add(
        Conv2d(n_filters=64,
               width=3,
               act='identity',
               include_bias=False,
               stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv4 52 56
    model.add(
        Conv2d(n_filters=128,
               width=3,
               act='identity',
               include_bias=False,
               stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv5 26 28
    model.add(
        Conv2d(n_filters=256,
               width=3,
               act='identity',
               include_bias=False,
               stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv6 13 14
    model.add(
        Conv2d(n_filters=512,
               width=3,
               act='identity',
               include_bias=False,
               stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=1, pool='max'))
    # conv7 13
    model.add(
        Conv2d(n_filters=1024,
               width=3,
               act='identity',
               include_bias=False,
               stride=1))
    model.add(BN(act=act))
    # conv8 13
    model.add(
        Conv2d(n_filters=512,
               width=3,
               act='identity',
               include_bias=False,
               stride=1))
    model.add(BN(act=act))

    model.add(
        Conv2d((n_classes + 5) * predictions_per_grid,
               width=1,
               act='identity',
               include_bias=False,
               stride=1))

    model.add(
        Detection(act=act_detection,
                  detection_model_type='yolov2',
                  anchors=anchors,
                  softmax_for_class_prob=softmax_for_class_prob,
                  coord_type=coord_type,
                  class_number=n_classes,
                  grid_number=grid_number,
                  predictions_per_grid=predictions_per_grid,
                  do_sqrt=do_sqrt,
                  coord_scale=coord_scale,
                  object_scale=object_scale,
                  prediction_not_a_object_scale=prediction_not_a_object_scale,
                  class_scale=class_scale,
                  detection_threshold=detection_threshold,
                  iou_threshold=iou_threshold,
                  random_boxes=random_boxes,
                  max_label_per_image=max_label_per_image,
                  max_boxes=max_boxes,
                  match_anchor_size=match_anchor_size,
                  num_to_force_coord=num_to_force_coord))
    return model
 def test_6(self):
     model1 = Sequential(self.s, model_table='table6')
     model1.add(Bidirectional(n=10, n_blocks=3))
     model1.add(OutputLayer())
Example #30
0
def YoloV1(conn,
           model_table='YoloV1',
           n_channels=3,
           width=448,
           height=448,
           scale=1.0 / 255,
           random_mutation=None,
           act='leaky',
           dropout=0,
           act_detection='AUTO',
           softmax_for_class_prob=True,
           coord_type='YOLO',
           max_label_per_image=30,
           max_boxes=30,
           n_classes=20,
           predictions_per_grid=2,
           do_sqrt=True,
           grid_number=7,
           coord_scale=None,
           object_scale=None,
           prediction_not_a_object_scale=None,
           class_scale=None,
           detection_threshold=None,
           iou_threshold=None,
           random_boxes=False,
           random_flip=None,
           random_crop=None):
    '''
    Generates a deep learning model with the Yolo V1 architecture.

    Parameters
    ----------
    conn : CAS
        Specifies the connection of the CAS connection.
    model_table : string, optional
        Specifies the name of CAS table to store the model.
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 448
    height : int, optional
        Specifies the height of the input layer.
        Default: 448
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1.0 / 255
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in
        the input layer.
        Valid Values: 'none', 'random'
    act: String, optional
        Specifies the activation function to be used in the convolutional layer
        layers and the final convolution layer.
        Default: 'leaky'
    dropout: double, optional
        Specifies the drop out rate.
        Default: 0
    act_detection : string, optional
        Specifies the activation function for the detection layer.
        Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP
        Default: AUTO
    softmax_for_class_prob : bool, optional
        Specifies whether to perform Softmax on class probability per
        predicted object.
        Default: True
    coord_type : string, optional
        Specifies the format of how to represent bounding boxes. For example,
        a bounding box can be represented with the x and y locations of the
        top-left point as well as width and height of the rectangle.
        This format is the 'rect' format. We also support coco and yolo formats.
        Valid Values: 'rect', 'yolo', 'coco'
        Default: 'yolo'
    max_label_per_image : int, optional
        Specifies the maximum number of labels per image in the training.
        Default: 30
    max_boxes : int, optional
        Specifies the maximum number of overall predictions allowed in the
        detection layer.
        Default: 30
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 20
    predictions_per_grid : int, optional
        Specifies the amount of predictions will be done per grid.
        Default: 2
    do_sqrt : bool, optional
        Specifies whether to apply the SQRT function to width and height of
        the object for the cost function.
        Default: True
    grid_number : int, optional
        Specifies the amount of cells to be analyzed for an image. For example,
        if the value is 5, then the image will be divided into a 5 x 5 grid.
        Default: 7
    coord_scale : float, optional
        Specifies the weight for the cost function in the detection layer,
        when objects exist in the grid.
    object_scale : float, optional
        Specifies the weight for object detected for the cost function in
        the detection layer.
    prediction_not_a_object_scale : float, optional
        Specifies the weight for the cost function in the detection layer,
        when objects do not exist in the grid.
    class_scale : float, optional
        Specifies the weight for the class of object detected for the cost
        function in the detection layer.
    detection_threshold : float, optional
        Specifies the threshold for object detection.
    iou_threshold : float, optional
        Specifies the IOU Threshold of maximum suppression in object detection.
    random_boxes : bool, optional
        Randomizing boxes when loading the bounding box information.
        Default: False
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'

    Returns
    -------
    :class:`Sequential`

    References
    ----------
    https://arxiv.org/pdf/1506.02640.pdf

    '''

    model = Sequential(conn=conn, model_table=model_table)

    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    model.add(InputLayer(**input_parameters))

    # conv1 448
    model.add(Conv2d(32, width=3, act=act, include_bias=False, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv2 224
    model.add(Conv2d(64, width=3, act=act, include_bias=False, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv3 112
    model.add(Conv2d(128, width=3, act=act, include_bias=False, stride=1))
    # conv4 112
    model.add(Conv2d(64, width=1, act=act, include_bias=False, stride=1))
    # conv5 112
    model.add(Conv2d(128, width=3, act=act, include_bias=False, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv6 56
    model.add(Conv2d(256, width=3, act=act, include_bias=False, stride=1))
    # conv7 56
    model.add(Conv2d(128, width=1, act=act, include_bias=False, stride=1))
    # conv8 56
    model.add(Conv2d(256, width=3, act=act, include_bias=False, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv9 28
    model.add(Conv2d(512, width=3, act=act, include_bias=False, stride=1))
    # conv10 28
    model.add(Conv2d(256, width=1, act=act, include_bias=False, stride=1))
    # conv11 28
    model.add(Conv2d(512, width=3, act=act, include_bias=False, stride=1))
    # conv12 28
    model.add(Conv2d(256, width=1, act=act, include_bias=False, stride=1))
    # conv13 28
    model.add(Conv2d(512, width=3, act=act, include_bias=False, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv14 14
    model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1))
    # conv15 14
    model.add(Conv2d(512, width=1, act=act, include_bias=False, stride=1))
    # conv16 14
    model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1))
    # conv17 14
    model.add(Conv2d(512, width=1, act=act, include_bias=False, stride=1))
    # conv18 14
    model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1))

    # conv19 14
    model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1))
    # conv20 7
    model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=2))
    # conv21 7
    model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1))
    # conv22 7
    model.add(Conv2d(1024, width=3, act=act, include_bias=False, stride=1))
    # conv23 7
    model.add(
        Conv2d(256,
               width=3,
               act=act,
               include_bias=False,
               stride=1,
               dropout=dropout))
    model.add(
        Dense(n=(n_classes + (5 * predictions_per_grid)) * grid_number *
              grid_number,
              act='identity'))

    model.add(
        Detection(act=act_detection,
                  detection_model_type='yolov1',
                  softmax_for_class_prob=softmax_for_class_prob,
                  coord_type=coord_type,
                  class_number=n_classes,
                  grid_number=grid_number,
                  predictions_per_grid=predictions_per_grid,
                  do_sqrt=do_sqrt,
                  coord_scale=coord_scale,
                  object_scale=object_scale,
                  prediction_not_a_object_scale=prediction_not_a_object_scale,
                  class_scale=class_scale,
                  detection_threshold=detection_threshold,
                  iou_threshold=iou_threshold,
                  random_boxes=random_boxes,
                  max_label_per_image=max_label_per_image,
                  max_boxes=max_boxes))

    return model