def test_pillow(self):
        """Test :py:class:`Size` type.
        """
        module = importlib.import_module('dltb.thirdparty.pil')
        self.assertIn('pil', Image.supported_formats())

        image = Image(self.example_image_filename)
        pil = Image.as_pil(image)
        self.assertIsInstance(pil, module.PIL.Image.Image)
    def test_qt(self):
        """Test :py:class:`Size` type.
        """
        module = importlib.import_module('qtgui.widgets.image')
        self.assertIn('qimage', Image.supported_formats())

        image = Image(self.example_image_filename)
        qimage = Image.as_qimage(image)
        self.assertIsInstance(qimage, module.QImage)
    def _image_to_internal(self, imagelike: Imagelike) -> np.ndarray:
        # FIXME[todo]: check out the correct preprocessing for AlexNet
        # with the current approach the accuracy is only around 30%

        # get a numpy.ndarray
        image = Image.as_array(imagelike,
                               dtype=np.float32,
                               colorspace=Colorspace.RGB)

        # FIXME: probably we should do center crop here ...
        image = imresize(image, (227, 227))
        # print("Alexnet._image_to_internal:", image.dtype, image.shape)

        # dividing by 256 brings accuracy down to almost 0%.
        # image = image/256.

        # centering slightly improves accuracy
        # FIXME[todo]: we need real means ...
        image = image - image.mean()

        # standardization reduces accuracy to below 3%.
        # image = image / image.std()

        # Caffe Uses BGR Order
        # RGB to BGR: this really boosts performance; from 33% to 55%
        image = image[:, :, ::-1]
        # tmp = image[:, :, 2].copy()
        # image[:, :, 2] = image[:, :, 0]
        # image[:, :, 0] = tmp
        return image
 def write(self, image: Imagelike, filename: str, **kwargs) -> None:
     # vmin, vmax: scalar
     #     vmin and vmax set the color scaling for the image by
     #     fixing the values that map to the colormap color
     #     limits. If either vmin or vmax is None, that limit is
     #     determined from the arr min/max value.
     #
     # cmap: str or Colormap, optional
     #     A Colormap instance or registered colormap name. The
     #     colormap maps scalar data to colors. It is ignored for
     #     RGB(A) data. Defaults to rcParams["image.cmap"] =
     #     'viridis' ('viridis').
     #
     # format: str
     #    The file format, e.g. 'png', 'pdf', 'svg', ...
     #
     # origin: {'upper', 'lower'}
     #    Indicates whether the (0, 0) index of the array is in the
     #    upper left or lower left corner of the axes. Defaults to
     #    rcParams["image.origin"] = 'upper' ('upper').
     #
     # dpi: int
     #    The DPI to store in the metadata of the file. This does
     #    not affect the resolution of the output image.
     #
     plt.imsave(filename, Image.as_array(image, dtype=np.uint8))
    def onImageChanged(self, index: int) -> None:
        self.storeMetadata()
        if 0 <= index < len(self._faces):
            self._index = index
            data = self._faces[index]
            self.dataView.setData(data)
            if hasattr(data, 'source'):
                image = Image(image=data.source)
                self.imageView.setData(image)

                if data.has_attribute('boundingbox'):
                    bbox = data.boundingbox
                    bbox = BoundingBox(x1=bbox[0],
                                       y1=bbox[1],
                                       x2=bbox[2],
                                       y2=bbox[3])
                    self.imageView.addRegion(Region(bbox))
            else:
                self.imageView.setData(None)

            position = self.multiImageView.imagePosition(index)
            if position is not None:
                imageSize = self.multiImageView.imageSize()
                spacing = self.multiImageView.spacing()
                xmargin = (imageSize.width() + spacing) // 2
                ymargin = (imageSize.height() + spacing) // 2
                self.multiImageScroller.ensureVisible(position.x(),
                                                      position.y(), xmargin,
                                                      ymargin)
        else:
            self._index = None
            self.dataView.setData(None)
            self.imageView.setData(None)
Example #6
0
    def image_to_internal(self, image: Imagelike) -> torch.Tensor:
        """Transform an image into a torch Tensor.
        """
        if isinstance(image, torch.Tensor):
            image_tensor = image

        elif isinstance(image, np.ndarray):
            # at this point we need to know the range (if further
            # preprocessing, e.g., normalization, is required ...)
            if False and (0 <= image).all():
                if (image <= 1).all():  # image is range 0.0 - 1.0
                    pass
                elif (image <= 255).all():  # image is range 0 - 255
                    pass

            # Question: channel first or channel last?
            # H X W X C  ==>   C X H X W
            #  image = np.transpose(image, (2, 0, 1))

            # preprocess_numpy expects numpy.ndarray of correct size,
            # dtype float and values in range [0.0, 1.0].
            # It performs the following operations:
            #  1. [no resizing]
            #  2. numpy.ndarray -> torch.Tensor
            #  3. normalization [0.0, 1.0] -> torch.imagenet_range
            image_tensor = self.preprocess_numpy(image)

            # old: explicit transformation:
            # H X W X C  ==>   C X H X W
            # image = np.transpose(image, (2, 0, 1))
            #
            # image = torch.from_numpy(image)
            # image = image.add(-self.imagenet_mean_.view(3, 1, 1)).\
            #     div(self.imagenet_std_.view(3, 1, 1))
            #
            # add batch dimension:  C X H X W ==> B X C X H X W
            # image = image.unsqueeze(0)

        else:
            # the _image_to_internal function expects as input a PIL image!
            image = Image.as_pil(image)

            # image should be PIL Image. Got <class 'numpy.ndarray'>
            image_tensor = self._image_to_internal(image)

        if image_tensor.dim() == 4:
            # image is already batch
            image_batch = image_tensor
        elif image_tensor.dim() == 3:
            # create a mini-batch as expected by the model
            # by adding a batch dimension:  C X H X W ==> B X C X H X W
            image_batch = image_tensor.unsqueeze(0)
        else:
            raise ValueError(f"Data of invalid shape {image.shape} cannot "
                             "be transformed into an internal torch image.")

        # move the input and model to GPU for speed if available
        image_batch = image_batch.to(self._device)

        return image_batch
Example #7
0
 def resize(self, image: Imagelike, size=(640, 360)) -> np.ndarray:
     """Resize the frame to a smaller resolution to save computation cost.
     """
     # note: skimage.transform.resize takes on output_shape, not a size!
     # in the output_shape the number of channels is optional.
     output_shape = size[::-1]
     image = Image.as_array(image)
     resized = resize(image, output_shape, preserve_range=True)
     resized = resized.astype(image.dtype)
     return resized
 def write_metadata(self, data: Image) -> None:
     """
     """
     if hasattr(data, 'metafile') and hasattr(data, 'valid'):
         suffix = '' if data.metafile.endswith('json2') else '2'
         meta = {
             'image': data.filename,
             'dataset': data.dataset,
             'valid': data.valid,
             'age': data.age
         }
         if data.has_attribute('source'):
             meta['source'] = data.source
         if data.has_attribute('boundingbox'):
             meta['boundingbox'] = data.boundingbox
         if data.has_attribute('id'):
             meta['id'] = data.id
         filename = data.metafile + suffix
         LOG.debug("Writing new meta file '%s'", filename)
         with open(filename, 'w') as outfile:
             json.dump(meta, outfile)
     else:
         LOG.debug("Not writing new meta file (metafile: %s, valid: %s).",
                   hasattr(data, 'metafile'), hasattr(data, 'valid'))
Example #9
0
 def crop_faces(image: Imagelike) -> np.ndarray:
     """Crop faces in the style of the original LFW dataset.  The procedure
     for obtaining the 250x250 pixel images is as follows: detect
     faces with the OpenCV Haar Cascade detector. Then scale the
     (square-shaped) bounding box by a factor of 2.2 in each
     direction.  Scale the resulting crop to 250x250 pixels.
     """
     opencv_face_module = \
         importlib.import_module('.face', 'dltb.thirdparty.opencv')
     detector = opencv_face_module.DetectorHaar()
     image = Image(image)
     bounding_boxes = list(detector.detect_boxes(image))
     faces = np.ndarray((len(bounding_boxes), 250, 250, 3), dtype=np.uint8)
     for index, box in enumerate(bounding_boxes):
         box = box.scale(2.2, reference='center')
         patch = box.extract.extract_from_image(image)
         faces[index] = imresize(patch, (250, 250))
     return faces
Example #10
0
 def warp(image: Imagelike, transformation: np.ndarray,
          size: Sizelike) -> np.ndarray:
     """Warp an image by applying a transformation.
     """
     image = Image.as_array(image)
     size = Size(size)
     output_shape = (size[1], size[0])
     # further argument: order (int, optional):
     #    The order of interpolation. The order has to be in the range 0-5:
     #        0: Nearest-neighbor
     #        1: Bi-linear (default)
     #        2: Bi-quadratic
     #        3: Bi-cubic
     #        4: Bi-quartic
     #        5: Bi-quintic
     warped = warp(image, transformation, output_shape=output_shape,
                   preserve_range=True)
     warped = warped.astype(image.dtype)
     return warped
 def load_metadata(self, data: Image) -> None:
     """
     """
     filename_meta = data.filename.rsplit('.', maxsplit=1)[0] + '.json'
     filename_meta += '2' if os.path.isfile(filename_meta + '2') else ''
     if os.path.isfile(filename_meta):
         LOG.debug("Loading meta file '%s'", filename_meta)
         with open(filename_meta) as infile:
             meta = json.load(infile)
             # image:        path to the image file
             # source:       path to the source file
             # dataset:      the dataset from which this images was taken
             # boundingbox:  bounding bos of the face in the original image
             # id:           the class label
             data.add_attribute('image', meta['image'])
             data.add_attribute('dataset', meta['dataset'])
             if 'source' in meta:
                 source_filename = meta['source']
                 source_filename = source_filename.replace('\\', '/')
                 source_filename = \
                     source_filename.replace('E:', self._basedir)
                 data.add_attribute('source', source_filename)
             if 'boundingbox' in meta:
                 data.add_attribute('boundingbox', meta['boundingbox'])
             if 'id' in meta:
                 data.add_attribute('id', meta['id'])
             data.add_attribute('age', meta.get('age', None))
             data.add_attribute('valid', meta.get('valid', True))
         data.add_attribute('metafile', filename_meta)
     else:
         LOG.debug("No meta file for data (tried '%s')", filename_meta)
         if data.filename.startswith(self.directory):
             filename = data.filename[len(self.directory) + 1:]
             parts = filename.split('/')
             label, imagename = parts[0], parts[-1]
             if imagename.startswith('imdb_wiki'):
                 data.add_attribute('dataset', 'imdb_wiki')
                 source_filename = os.path.join(self._clean4, 'Unified',
                                                filename)
                 if os.path.isfile(source_filename):
                     data.add_attribute('source', source_filename)
             elif len(parts) > 2 and parts[1] == 'New':
                 LOG.warning("New image without meta data: '%s'", filename)
                 data.add_attribute('dataset')
             elif os.path.isfile(
                     os.path.join(self._clean2, 'Patricia', filename)):
                 data.add_attribute('dataset', 'Patricia')
                 data.add_attribute(
                     'source',
                     os.path.join(self._clean2, 'Patricia', filename))
             else:
                 LOG.warning("Unknown source dataset for '%s'", filename)
                 data.add_attribute('dataset')
         else:
             LOG.warning("Bad filename: '%s' (not in directory '%s')",
                         data.filename, self.directory)
             data.add_attribute('dataset')
         if not filename_meta.endswith('json2'):
             filename_meta += '2'
         data.add_attribute('metafile', filename_meta)
         if not data.has_attribute('age'):
             data.add_attribute('age')
         if not data.has_attribute('valid'):
             data.add_attribute('valid', True)
Example #12
0
    def preprocess(self,
                   image: Imagelike,
                   size: Tuple[int, int] = None,
                   bbox=None,
                   landmark=None,
                   margin: int = 0,
                   **kwargs):  # margin=44
        """Preprocess the image. Preprocessing consists of multiple steps:
        1. read the image
        2. obtain the target image size
        3. align the image

        Arguments
        ---------
        image:
            The image to be preprocessed.
        size:
            The target size of the image after preprocessing.
        bbox:
            The bounding for the image.
        landmarks:
            Facial landmarks for face alignment.
        margin:
            Extra margin to put around the face.
        """
        #
        # 1. read the image
        #
        img = Image.as_array(image)

        #
        # 2. obtain the target image size
        #

        # str_image_size = image_size
        # image_size = []  # image_size as two-element list [width, height]
        # if str_image_size:
        #    image_size = [int(x) for x in str_image_size.split(',')]
        #    if len(image_size) == 1:
        #        image_size = [image_size[0], image_size[0]]
        if size is None:
            image_size = (112, 112)
        else:
            image_size = size

        assert len(image_size) == 2
        assert image_size[0] == 112
        assert image_size[0] == 112 or image_size[1] == 96

        #
        # 3. align the image
        #

        # obtain a transformation matrix
        transformation = landmark and self._transformation_matrix(landmark)

        # if no transformation was obtained, just resize
        if transformation is None:
            return self._resize_image(img, image_size, margin=margin)

        # otherweise apply the transformation
        return self._transform_image(img, transformation, image_size)
 def setImage(self, image: Imagelike) -> None:
     """Set the image for this :py:class:`FacePanel`. This
     will initiate the processing of this image using the
     current tools.
     """
     self.setData(Image.as_data(image))
 def random(self, seed: int = None) -> None:
     """Generate random data.
     """
     self._image = Image(self._generator.random(seed))
     self.change('data_changed')
 def test_image_creation(self):
     """Test creation of `Image`.
     """
     image = Image(self.example_image_filename)
     self.assertEqual(image.size(), self.example_image_size)
 def test_supported_formats(self):
     """Test supported image formats.
     """
     self.assertIn('array', Image.supported_formats())
     self.assertIn('image', Image.supported_formats())
Example #17
0
def main():
    """Main program: parse command line options and start face tools.
    """

    parser = ArgumentParser(description='Deep learning based face processing')
    parser.add_argument('images',
                        metavar='IMAGE',
                        type=str,
                        nargs='*',
                        help='an image to use')
    parser.add_argument('--webcam',
                        action='store_true',
                        default=False,
                        help='run on webcam')
    parser.add_argument('--show',
                        action='store_true',
                        default=False,
                        help='show results in a window')

    group_detector = parser.add_argument_group("Detector arguments")
    group_detector.add_argument('--detect',
                                action='store_true',
                                default=False,
                                help='run face detection')
    group_detector.add_argument('--detector',
                                type=str,
                                help='the face detector to use')
    group_detector.add_argument('--list-detectors',
                                action='store_true',
                                default=False,
                                help='list available detectors')
    group_detector.add_argument('--warper',
                                type=str,
                                default=None,
                                help='the image warper to use')
    group_detector.add_argument('--list-warpers',
                                action='store_true',
                                default=False,
                                help='list available image warpers')
    group_detector.add_argument('--size',
                                type=str,
                                default='112x112',
                                help='size of the output image')
    group_detector.add_argument('--output-directory',
                                type=str,
                                default='output',
                                help='path of the output directory')

    ToolboxArgparse.add_arguments(parser)
    DatasourceArgparse.prepare(parser)

    args = parser.parse_args()
    ToolboxArgparse.process_arguments(parser, args)

    if args.list_detectors:
        print("FaceDetector implementations:")
        for index, implementation in enumerate(implementations(FaceDetector)):
            print(f"{index+1}) {implementation}")
        return os.EX_OK

    if args.list_warpers:
        print("ImageWarper implementations:")
        for index, implementation in enumerate(ImageWarper.implementations()):
            print(f"{index+1}) {implementation}")
        return os.EX_OK

    # obtain the datasource if provided (otherwise None)
    datasource = DatasourceArgparse.datasource(parser, args)

    # obtain an ImageDisplay object if --show is set (otherwise None)
    display = get_display() if args.show else None

    # obtain the face detector
    detector = \
        Detector(implementation='dltb.thirdparty.face_evolve.mtcnn.Detector')
    print(f"Detector: {detector} ({type(detector)})")

    # obtain the ImageWarper
    #warper = ImageWarper(implementation='dltb.thirdparty.skimage.ImageUtil')
    #warper = ImageWarper(implementation='dltb.thirdparty.opencv.ImageUtils')
    warper = ImageWarper(implementation=args.warper)

    # create the LandmarkAligner
    aligner = LandmarkAligner(detector=detector, size=args.size, warper=warper)

    if not datasource:
        for image in args.images:
            apply_single_hack(Image(image), detector, aligner, display=display)
    else:
        apply_multi_hack(datasource,
                         detector,
                         aligner,
                         input_directory=datasource.directory,
                         output_directory=Path(args.output_directory),
                         progress=tqdm.tqdm,
                         display=display)

    return os.EX_OK
Example #18
0
 def setUp(self):
     """Initialize a detector to be used in the tests.
     """
     self.detector = Tool['haar']
     self.detector.prepare()
     self.image = Image.as_data('examples/reservoir-dogs.jpg')
Example #19
0
def main():
    """Main program: parse command line options and start face tools.
    """

    parser = ArgumentParser(description='Deep learning based face processing')
    parser.add_argument('images',
                        metavar='IMAGE',
                        type=str,
                        nargs='*',
                        help='an image to use')
    parser.add_argument('--webcam',
                        action='store_true',
                        default=False,
                        help='run on webcam')
    parser.add_argument('--show',
                        action='store_true',
                        default=True,
                        help='show results in a window')
    parser.add_argument('--evaluate',
                        action='store_true',
                        default=True,
                        help='perform evaluation')
    parser.add_argument('--output-directory',
                        type=str,
                        default='output',
                        help='path of the output directory')

    group_detector = parser.add_argument_group("Detector arguments")
    group_detector.add_argument('--detect',
                                action='store_true',
                                default=False,
                                help='run face detection')
    group_detector.add_argument('--detector',
                                type=str,
                                help='the face detector to use')
    group_detector.add_argument('--list-detectors',
                                action='store_true',
                                default=False,
                                help='list available detectors')

    group_aligner = parser.add_argument_group("Alignment arguments")
    group_aligner.add_argument('--align',
                               action='store_true',
                               default=False,
                               help='run face alignment')
    group_aligner.add_argument('--warper',
                               type=str,
                               default=None,
                               help='the image warper to use')
    group_aligner.add_argument('--list-warpers',
                               action='store_true',
                               default=False,
                               help='list available image warpers')
    group_aligner.add_argument('--size',
                               type=str,
                               default='112x112',
                               help='size of the output image')

    group_recognizer = parser.add_argument_group("Recognition arguments")
    group_recognizer.add_argument('--verify',
                                  action='store_true',
                                  default=False,
                                  help='run face verification')

    ToolboxArgparse.add_arguments(parser)
    DatasourceArgparse.prepare(parser)

    args = parser.parse_args()
    ToolboxArgparse.process_arguments(parser, args)

    if args.list_detectors:
        print("FaceDetector implementations:")
        for index, implementation in enumerate(implementations(FaceDetector)):
            print(f"{index+1}) {implementation}")
        return

    if args.list_warpers:
        print("ImageWarper implementations:")
        for index, implementation in enumerate(ImageWarper.implementations()):
            print(f"{index+1}) {implementation}")
        return os.EX_OK

    # obtain the datasource if provided (otherwise None)
    datasource = DatasourceArgparse.datasource(parser, args)

    if args.detector:
        detector = FaceDetector(implementation=args.detector)
    elif args.detector:  # FIXME[old]
        print(f"Detector class: {args.detector}")
        Detector = import_class(args.detector)
        detector = Detector()
        # 'haar', 'ssd', 'hog',  'cnn', 'mtcnn'
        # detector = Tool['haar']
        # detector = Tool['ssd']
        print(f"Detector: {detector} [prepared={detector.prepared}]")
        detector.prepare()
        print(f"Detector: {detector} [prepared={detector.prepared}]")

    if args.detect:

        if args.webcam:
            webcam = Webcam()
            display = ImageDisplay(module='qt')
            display.present(display_video, (webcam, detector))

        for url in args.images:
            if os.path.isdir(url):
                datasource = ImageDirectory('images')
                datasource.prepare()
                for data in datasource:
                    print(detector(data))
                    # detector.process(data, mark=True)
                    # output_detections(detector, data)
            else:
                print(f"Applying detector to {url}")
                # print(detector(url))
                result = ('detections', 'mark')  # , 'extract')
                data = detector.process_image(
                    url, result=result)  #mark=True, extract=True
                data.debug()
                output_detections(detector, data)  # , extract=True

    elif args.align:
        #
        # perform face alignment
        #

        # obtain the face detector
        detector_implementation = 'dltb.thirdparty.face_evolve.mtcnn.Detector'
        detector = FaceDetector(implementation=detector_implementation)
        print(f"Detector: {detector} ({type(detector)})")

        # obtain the ImageWarper
        warper = ImageWarper(implementation=args.warper)

        # create an aligner
        aligner = LandmarkAligner(detector=detector,
                                  size=args.size,
                                  warper=warper)

        # obtain an ImageDisplay object if --show is set (otherwise None)
        display = get_display() if args.show else None

        if not datasource:
            for image in args.images:
                apply_single_hack(Image(image),
                                  detector,
                                  aligner,
                                  display=display)
        else:
            apply_multi_hack(datasource,
                             detector,
                             aligner,
                             input_directory=datasource.directory,
                             output_directory=Path(args.output_directory),
                             progress=tqdm.tqdm,
                             display=display)

    elif args.evaluate:

        # obtain the face detector
        detector_implementation = 'dltb.thirdparty.face_evolve.mtcnn.Detector'
        detector = FaceDetector(implementation=detector_implementation)
        print(f"Detector: {detector} ({type(detector)})")

        # obtain the ImageWarper
        warper = ImageWarper(implementation=args.warper)

        # create an aligner
        aligner = LandmarkAligner(detector=detector,
                                  size=args.size,
                                  warper=warper)

        from dltb.thirdparty.arcface import ArcFace

        arcface = ArcFace(aligner=aligner)

        embedding_file_name = Path("embeddings.npz")
        if embedding_file_name.is_file():
            content = np.load(embedding_file_name)
            embeddings, labels = content['embeddings'], content['labels']
        else:
            iterable = datasource.pairs()
            iterable = tqdm.tqdm(iterable)

            embeddings, labels = arcface.embed_labeled_pairs(iterable)

            print(f"Writing embeddings of shape {embeddings.shape} to "
                  f"'{embedding_file_name}'")
            np.savez_compressed(embedding_file_name,
                                embeddings=embeddings,
                                labels=labels)

        print("embeddings:", embeddings.shape, embeddings.dtype)
        print("labels:", labels.shape, labels.dtype)
        #for image1, image2, same in iterable:
        #    print(image1.shape, image2.shape, same)
        #    embedding1 = embed(image1)
        #    embedding2 = embed(image1)
        #    distance = distance(embedding1, embedding2)

    else:
        print("No operation specified.")