def testTrain(self):
     c = Classifier(getwords)
     item = "Hello hello world, my name is Python."
     cat = "Good"
     c.train(item, cat)
     self.assertEqual(c.catcount("Good"), 1)
     self.assertEqual(c.fcount("hello", "Good"), 1)
     self.assertFalse(c.fc.has_key("my"))
 def testGetFeatures(self):
     c = Classifier(getwords)
     dict = c.getfeatures("Hello World world world ,       hello has cats and vervyveryveryveryveryverylongword")
     self.assertIsNotNone(dict)
     self.assertIsNotNone(dict["hello"])
     self.assertEqual(dict["hello"], 1)
     self.assertFalse(dict.has_key("has"))
     self.assertFalse(dict.has_key("vervyveryveryveryveryverylongword"))
 def testCatCount(self):
     c = Classifier(getwords)
     c.incc("Bad")
     c.incc("Bad")
     c.incc("Good")
     self.assertEqual(c.catcount("Good"), 1)
     self.assertEqual(c.catcount("Bad"), 2)
 def testIncC(self):
     c = Classifier(getwords)
     c.incc("Bad")
     self.assertEqual(c.cc["Bad"], 1)
     c.incc("Bad")
     self.assertEqual(c.cc["Bad"], 2)
     c.incc("Good")
     self.assertEqual(c.cc["Good"], 1)
 def testFCount(self):
     c = Classifier(getwords)
     c.incf("hello", "Good")
     c.incf("hello", "Good")
     c.incf("hello", "Bad")
     self.assertEqual(c.fcount("hello", "Good"), 2)
     self.assertEqual(c.fcount("hello", "Bad"), 1)
     self.assertEqual(c.fcount("wurst", "Bad"), 0)
 def testIncF(self):
     c = Classifier(getwords)
     c.incf("hello", "Good")
     self.assertEqual(c.fc["hello"]["Good"], 1)
     c.incf("hello", "Good")
     self.assertEqual(c.fc["hello"]["Good"], 2)
     c.incf("hello", "Bad")
     self.assertEqual(c.fc["hello"]["Bad"], 1)
Example #7
0
def test_infc_func():
    c = Classifier(getfeatures=None)
    c.infc("python", "good")
    c.infc("python", "good")
    c.infc("the", "bad")
    c.infc("the", "good")

    print c.fc
              'http://www.spiegel.de/schlagzeilen/tops/index.rss',
              'http://www.sueddeutsche.de/app/service/rss/alles/rss.xml'
              ]

test=["http://rss.golem.de/rss.php?r=sw&feed=RSS0.91",
          'http://newsfeed.zeit.de/politik/index',  
          'http://www.welt.de/?service=Rss'
           ]

countnews={}
countnews['tech']=0
countnews['nontech']=0
countnews['test']=0


c = Classifier(getwords, initprob=0.5)

print "--------------------News from trainTech------------------------"
for feed in trainTech:
    f=feedparser.parse(feed)
    for e in f.entries:
        print '\n---------------------------'
        fulltext=stripHTML(e.title+' '+e.description)
        print fulltext
        countnews['tech']+=1

        c.train(fulltext,"Tech")

print "----------------------------------------------------------------"
print "----------------------------------------------------------------"
print "----------------------------------------------------------------"
    def testProb(self):
        c = Classifier(getwords)

        # training
        c.incc("Good")
        c.incf("hello", "Good")
        c.incc("Good")
        c.incf("world", "Good")
        c.incc("Good")
        c.incf("world", "Good")
        c.incc("Bad")
        c.incf("world", "Bad")

        # classify new document
        item = "world world wurst Wurst wurst world"

        self.assertEqual(c.prob(item, "Good"), 0.234375)
 def testWeightedProb(self):
     c = Classifier(getwords)
     c.incc("Good")
     c.incf("hello", "Good")
     c.incc("Good")
     c.incf("world", "Good")
     c.incc("Good")
     c.incf("world", "Good")
     c.incc("Bad")
     c.incf("world", "Bad")
     self.assertEqual(c.weightedprob("world", "Good"), 5.0/8.0)
     self.assertEqual(c.weightedprob("wurst", "Good"), 0.5)
 def testFProb(self):
     c = Classifier(getwords)
     c.incc("Good")
     c.incf("hello", "Good")
     c.incc("Good")
     c.incf("world", "Good")
     c.incc("Good")
     c.incf("world", "Good")
     self.assertEqual(c.fprob("world", "Good"), 2.0/3.0)
 def testTotalCount(self):
     c = Classifier(getwords)
     c.incc("Bad")
     c.incc("Bad")
     c.incc("Good")
     self.assertEqual(c.totalcount(), 3)
    def testClassifier(self):
        c = Classifier(getwords)
        c.train("nobody owns the water", "Good")
        c.train("the quick rabbit jumps fences", "Good")
        c.train("buy pharmaceuticals now", "Bad")
        c.train("make quick money at the online casino", "Bad")
        c.train("the quick brown fox jumps", "Good")
        c.train("next meeting is at night", "Good")
        c.train("meeting with your superstar", "Bad")
        c.train("money like water", "Bad")

        # added quick to the test string, because with 'money jumps' Good and Bad got the same value.
        self.assertEqual(c.classify("the money jumps quick"), "Good")
Example #14
0
      fulltext=stripHTML(e.title+' '+e.description)
      print fulltext
      data.append(fulltext)
      countnews['test']+=1
print "----------------------------------------------------------------"
print "----------------------------------------------------------------"
print "----------------------------------------------------------------"

print 'Number of used trainings samples in categorie tech',countnews['tech']
print 'Number of used trainings samples in categorie notech',countnews['nontech']
print 'Number of used test samples',countnews['test']
print '--'*30



rss_classifier = Classifier()

for tech in train_data["good"]:
    rss_classifier.train(tech, "good")

for nontech in train_data["bad"]:
    rss_classifier.train(nontech, "bad")

print "---- training finished ---------------------"
for test in data:
    g_pb = rss_classifier.prob(test, "good")
    b_pb = rss_classifier.prob(test, "bad")
    # Normalisierung der Wahrscheinlichkeiten
    g_pb_n = g_pb /(g_pb + b_pb)
    b_pb_n = b_pb /(g_pb + b_pb)
    print test
          'http://www.welt.de/?service=Rss',
          'http://www.haz.de/rss/feed/haz_schlagzeilen']



countnews={}
countnews['tech']=0
countnews['sports']=0
countnews['economy']=0
countnews['politics']=0
countnews['science']=0

countnews['test']=0


c = Classifier(getwords, initprob=0.5)

print "--------------------News from trainTech------------------------"
for feed in trainTech:
    f=feedparser.parse(feed)
    for e in f.entries:
        print '\n---------------------------'
        fulltext=stripHTML(e.title+' '+e.description)
        print fulltext
        countnews['tech']+=1

        c.train(fulltext,"Tech")

print "----------------------------------------------------------------"
print "----------------------------------------------------------------"
print "----------------------------------------------------------------"