Example #1
0
def main():
    parser = argparse.ArgumentParser(
        description='Train a model on TriviaQA unfiltered')
    parser.add_argument(
        'mode',
        choices=["confidence", "merge", "shared-norm", "sigmoid", "paragraph"])
    parser.add_argument("name", help="Where to store the model")
    parser.add_argument("-t",
                        "--n_tokens",
                        default=400,
                        type=int,
                        help="Paragraph size")
    parser.add_argument(
        '-n',
        '--n_processes',
        type=int,
        default=2,
        help="Number of processes (i.e., select which paragraphs to train on) "
        "the data with")
    args = parser.parse_args()
    mode = args.mode

    out = args.name + "-" + datetime.now().strftime("%m%d-%H%M%S")

    model = get_model(100, 140, mode, WithIndicators())

    extract = ExtractMultiParagraphsPerQuestion(MergeParagraphs(args.n_tokens),
                                                ShallowOpenWebRanker(16),
                                                model.preprocessor,
                                                intern=True)

    eval = [
        LossEvaluator(),
        MultiParagraphSpanEvaluator(8,
                                    "triviaqa",
                                    mode != "merge",
                                    per_doc=False)
    ]
    oversample = [1] * 4

    if mode == "paragraph":
        n_epochs = 120
        test = RandomParagraphSetDatasetBuilder(120, "flatten", True,
                                                oversample)
        train = StratifyParagraphsBuilder(ClusteredBatcher(
            60, ContextLenBucketedKey(3), True),
                                          oversample,
                                          only_answers=True)
    elif mode == "confidence" or mode == "sigmoid":
        if mode == "sigmoid":
            n_epochs = 640
        else:
            n_epochs = 160
        test = RandomParagraphSetDatasetBuilder(120, "flatten", True,
                                                oversample)
        train = StratifyParagraphsBuilder(
            ClusteredBatcher(60, ContextLenBucketedKey(3), True), oversample)
    else:
        n_epochs = 80
        test = RandomParagraphSetDatasetBuilder(
            120, "merge" if mode == "merge" else "group", True, oversample)
        train = StratifyParagraphSetsBuilder(30, mode == "merge", True,
                                             oversample)

    data = TriviaQaOpenDataset()

    params = TrainParams(SerializableOptimizer("Adadelta",
                                               dict(learning_rate=1)),
                         num_epochs=n_epochs,
                         ema=0.999,
                         max_checkpoints_to_keep=2,
                         async_encoding=10,
                         log_period=30,
                         eval_period=1800,
                         save_period=1800,
                         eval_samples=dict(dev=None, train=6000))

    data = PreprocessedData(data, extract, train, test, eval_on_verified=False)

    data.preprocess(args.n_processes, 1000)

    with open(__file__, "r") as f:
        notes = f.read()
    notes = "Mode: " + args.mode + "\n" + notes

    trainer.start_training(data, model, params, eval, model_dir.ModelDir(out),
                           notes)
Example #2
0
def main():
    parser = argparse.ArgumentParser(
        description='Train a model on TriviaQA unfiltered')
    parser.add_argument(
        'mode',
        choices=["confidence", "merge", "shared-norm", "sigmoid", "paragraph"])
    parser.add_argument("name", help="Where to store the model")
    parser.add_argument("-t",
                        "--n_tokens",
                        default=400,
                        type=int,
                        help="Paragraph size")
    parser.add_argument(
        '-n',
        '--n_processes',
        type=int,
        default=2,
        help="Number of processes (i.e., select which paragraphs to train on) "
        "the data with")
    parser.add_argument("-s",
                        "--source_dir",
                        type=str,
                        default=None,
                        help="where to take input files")
    parser.add_argument("--n_epochs",
                        type=int,
                        default=None,
                        help="Max number of epoches to train on ")
    parser.add_argument("--char_th",
                        type=int,
                        default=None,
                        help="char level embeddings")
    parser.add_argument("--hl_dim",
                        type=int,
                        default=None,
                        help="hidden layer dim size")
    parser.add_argument("--regularization",
                        type=int,
                        default=None,
                        help="hidden layer dim size")
    parser.add_argument("--LR",
                        type=float,
                        default=1.0,
                        help="hidden layer dim size")
    parser.add_argument("--save_every",
                        type=int,
                        default=1800,
                        help="save period")

    parser.add_argument("--init_from",
                        type=str,
                        default=None,
                        help="model to init from")
    args = parser.parse_args()
    mode = args.mode

    #out = args.name + "-" + datetime.now().strftime("%m%d-%H%M%S")
    out = join('models', args.name)

    char_th = 100
    hl_dim = 140
    if args.char_th is not None:
        print(args.char_th)
        char_th = int(args.char_th)
        out += '--th' + str(char_th)
    if args.hl_dim is not None:
        print(args.hl_dim)
        hl_dim = int(args.hl_dim)
        out += '--hl' + str(hl_dim)

    if args.init_from is None:
        model = get_model(char_th, hl_dim, mode, WithIndicators())
    else:
        md = model_dir.ModelDir(args.init_from)
        model = md.get_model()

    extract = ExtractMultiParagraphsPerQuestion(MergeParagraphs(args.n_tokens),
                                                ShallowOpenWebRanker(16),
                                                model.preprocessor,
                                                intern=True)

    eval = [
        LossEvaluator(),
        MultiParagraphSpanEvaluator(8,
                                    "triviaqa",
                                    mode != "merge",
                                    per_doc=False)
    ]
    oversample = [1] * 4

    if mode == "paragraph":
        n_epochs = 120
        test = RandomParagraphSetDatasetBuilder(120, "flatten", True,
                                                oversample)
        train = StratifyParagraphsBuilder(ClusteredBatcher(
            60, ContextLenBucketedKey(3), True),
                                          oversample,
                                          only_answers=True)
    elif mode == "confidence" or mode == "sigmoid":
        if mode == "sigmoid":
            n_epochs = 640
        else:
            n_epochs = 160
        test = RandomParagraphSetDatasetBuilder(120, "flatten", True,
                                                oversample)
        train = StratifyParagraphsBuilder(
            ClusteredBatcher(60, ContextLenBucketedKey(3), True), oversample)
    else:
        n_epochs = 80
        test = RandomParagraphSetDatasetBuilder(
            120, "merge" if mode == "merge" else "group", True, oversample)
        train = StratifyParagraphSetsBuilder(30, mode == "merge", True,
                                             oversample)

    if args.n_epochs is not None:
        n_epochs = args.n_epochs
        out += '--' + str(n_epochs)

    if args.LR != 1.0:
        out += '--' + str(args.LR)

    data = TriviaQaOpenDataset(args.source_dir)

    async_encoding = 10
    #async_encoding = 0
    params = TrainParams(SerializableOptimizer("Adadelta",
                                               dict(learning_rate=args.LR)),
                         num_epochs=n_epochs,
                         num_of_steps=250000,
                         ema=0.999,
                         max_checkpoints_to_keep=2,
                         async_encoding=async_encoding,
                         log_period=30,
                         eval_period=1800,
                         save_period=args.save_every,
                         eval_samples=dict(dev=None, train=6000),
                         regularization_weight=None)

    data = PreprocessedData(data, extract, train, test, eval_on_verified=False)

    data.preprocess(args.n_processes, 1000)

    with open(__file__, "r") as f:
        notes = f.read()
    notes = "Mode: " + args.mode + "\n" + notes

    if args.init_from is not None:
        init_from = model_dir.ModelDir(args.init_from).get_best_weights()
        if init_from is None:
            init_from = model_dir.ModelDir(
                args.init_from).get_latest_checkpoint()
    else:
        init_from = None

    trainer.start_training(data,
                           model,
                           params,
                           eval,
                           model_dir.ModelDir(out),
                           notes,
                           initialize_from=init_from)