Example #1
0
def blp_en(pTrains,pTests):
    trains=[CDocument(label,p.en) for label,p in pTrains]    
    tests=[CDocument(label,p.en) for label,p in pTests]
    for d in trains+tests:
        d.words['SMOOTH']=1
    
    blp=BLP(trains+tests)
    blp.LP_Classify(trains,tests)
Example #2
0
def classify_translate_cerelation(pTrains,pTests):
    dict=CEDict()
    pmi=PMI()
    
    trains=[]
    tests=[]
    
    for label,p in pTrains:
        words=getTranlateFeaturesCERelation(p,dict,pmi)
        trains.append(CDocument(label,words))
    for label,p in pTests:
        words=getTranlateFeaturesCERelation(p,dict,pmi)
        tests.append(CDocument(label,words))
    
    return me_classify(trains,tests)
Example #3
0
def classify_sentiment(pTrains,pTests):
    cn_lexicon=CnSentimentLexicon()
    en_lexicon=EnSentimentLexicon()
    
    trains=[]
    tests=[]
    
    for label,p in pTrains:
        words=getSentimentFeatures(p,cn_lexicon,en_lexicon)
        trains.append(CDocument(label,words))
    for label,p in pTests:
        words=getSentimentFeatures(p,cn_lexicon,en_lexicon)
        tests.append(CDocument(label,words))
    
    return me_classify(trains,tests)
Example #4
0
def blp_translate_simple(pTrains,pTests):
    dict=CEDict()
    
    trains=[]
    tests=[]
    
    for label,p in pTrains:
        words=getTranlateFeatures(p,dict)
        trains.append(CDocument(label,words))
    for label,p in pTests:
        words=getTranlateFeatures(p,dict)
        tests.append(CDocument(label,words))
        
    blp=BLP(trains+tests)
    blp.LP_Classify(trains,tests)
Example #5
0
def classify_translate_simple(pTrains,pTests):
    dict=CEDict()
    syn=Synonym()
#    lm=LanguageModel()
    
    trains=[]
    tests=[]
    
    for label,p in pTrains:
        words=getTranlateFeatures(p,dict)
        trains.append(CDocument(label,words))
    for label,p in pTests:
        words=getTranlateFeatures(p,dict)
        tests.append(CDocument(label,words))
    
    return me_classify(trains,tests)
Example #6
0
def blp_sentiment(pTrains,pTests):
    cn_lexicon=CnSentimentLexicon()
    en_lexicon=EnSentimentLexicon()
    
    trains=[]
    tests=[]
    
    for label,p in pTrains:
        words=getSentimentFeatures(p,cn_lexicon,en_lexicon)
        trains.append(CDocument(label,words))
    for label,p in pTests:
        words=getSentimentFeatures(p,cn_lexicon,en_lexicon)
        tests.append(CDocument(label,words))
    
    blp=BLP(trains+tests)
    blp.LP_Classify(trains,tests)
Example #7
0
def blp_translate_pmi(pTrains,pTests):
    dict=CEDict()
    syn=Synonym()
    pmi=PMI()
    
    trains=[]
    tests=[]
    
    for label,p in pTrains:
        words= getTranlateFeaturesPMI(p,dict,pmi)
        trains.append(CDocument(label,words))
    for label,p in pTests:
        words= getTranlateFeaturesPMI(p,dict,pmi)
        tests.append(CDocument(label,words))
    
    blp=BLP(trains+tests)
    blp.LP_Classify(trains,tests)
Example #8
0
def blp_translate_lm(pTrains,pTests):
    dict=CEDict()
    syn=Synonym()
    lm=LanguageModel()
    
    trains=[]
    tests=[]
    
    for label,p in pTrains:
        words=getTranslateFeaturesByLM(p,dict,lm)
        trains.append(CDocument(label,words))
    for label,p in pTests:
        words=getTranslateFeaturesByLM(p,dict,lm)
        tests.append(CDocument(label,words))
    
    blp=BLP(trains+tests)
    blp.LP_Classify(trains,tests)
Example #9
0
 def mMakeBooks(self, mynBooks):
     # A collection has lots of books
     for icoll in xrange(mynBooks):
         ndocsize = util.fnnCalcDocSize(self.nValue)
         cDoc = CDocument(ndocsize, self.sClientID, self.ID)
         self.lDocIDs.append(cDoc.ID)
         self.lDocIDsRemaining.append(cDoc.ID)
         self.nDocsRemaining += 1
     return self.ID
Example #10
0
def blp_sense_sentiment(pTrains,pTests):
    dict=CEDict()
    pmi=PMI()
    
    cn_lexicon=CnSentimentLexicon()
    en_lexicon=EnSentimentLexicon()
    
    trains=[]
    tests=[]
    
    for label,p in pTrains:
        words=getFeaturesSenseAndSentiment(p,dict,pmi,cn_lexicon,en_lexicon)
        trains.append(CDocument(label,words))
    for label,p in pTests:
        words=getFeaturesSenseAndSentiment(p,dict,pmi,cn_lexicon,en_lexicon)
        tests.append(CDocument(label,words))
    
    blp=BLP(trains+tests)
    blp.LP_Classify(trains,tests)
Example #11
0
def blp_translate_cerelation(pTrains,pTests):
    dict=CEDict()
    pmi=PMI()
    
    trains=[]
    tests=[]
    
    for label,p in pTrains:
        words=getTranlateFeaturesCERelation(p,dict,pmi)
        trains.append(CDocument(label,words))
    for label,p in pTests:
        words=getTranlateFeaturesCERelation(p,dict,pmi)
        tests.append(CDocument(label,words))
    
#    for d in trains+tests:
#        d.words['SMOOTH']=1
    
    
    blp=BLP(trains+tests)
    blp.LP_Classify(trains,tests)
Example #12
0
def classify_en(pTrains,pTests):
    trains=[CDocument(label,p.en) for label,p in pTrains]
    tests=[CDocument(label,p.en) for label,p in pTests]
    return me_classify(trains,tests)
Example #13
0
def classify_all(pTrains,pTests):
    trains=[CDocument(label,p.words) for label,p in pTrains]    
    tests=[CDocument(label,p.words) for label,p in pTests]
    return me_classify(trains,tests)