def convert(msh_file, h5_file): '''Temporary version of convert from msh to h5''' root, _ = os.path.splitext(msh_file) assert os.path.splitext(msh_file)[1] == '.msh' assert os.path.splitext(h5_file)[1] == '.h5' # Get the xml mesh xml_file = '.'.join([root, 'xml']) subprocess.call(['dolfin-convert %s %s' % (msh_file, xml_file)], shell=True) # Success? assert os.path.exists(xml_file) mesh = Mesh(xml_file) out = HDF5File(mesh.mpi_comm(), h5_file, 'w') out.write(mesh, 'mesh') info('Mesh has %d cells' % mesh.num_cells()) info('Mesh size %g %g' % (mesh.hmin(), mesh.hmax())) outputs = [mesh] # Save ALL data as facet_functions names = ('surfaces', 'volumes') for name, region in zip(names, ('facet_region.xml', 'physical_region.xml')): r_xml_file = '_'.join([root, region]) f = MeshFunction('size_t', mesh, r_xml_file) out.write(f, name) outputs.append(f) return outputs
def convert(msh_file, h5_file, save_mvc=False): '''Temporary version of convertin from msh to h5''' root, _ = os.path.splitext(msh_file) assert os.path.splitext(msh_file)[1] == '.msh' assert os.path.splitext(h5_file)[1] == '.h5' # Get the xml mesh xml_file = '.'.join([root, 'xml']) subprocess.call(['dolfin-convert %s %s' % (msh_file, xml_file)], shell=True) # Success? assert os.path.exists(xml_file) mesh = Mesh(xml_file) out = HDF5File(mesh.mpi_comm(), h5_file, 'w') out.write(mesh, 'mesh') print('Mesh has %d cells' % mesh.num_cells()) print('Mesh size %g %g' % (mesh.hmin(), mesh.hmax())) # Save ALL data as facet_functions names = ('surfaces', 'volumes') if not save_mvc: for name, region in zip(names, ('facet_region.xml', 'physical_region.xml')): r_xml_file = '_'.join([root, region]) f = MeshFunction('size_t', mesh, r_xml_file) print('%d %s with 1' % (sum(1 for _ in SubsetIterator(f, 1)), name)) out.write(f, name) return True for name, region in zip(names, ('facet_region.xml', 'physical_region.xml')): r_xml_file = '_'.join([root, region]) f = MeshFunction('size_t', mesh, r_xml_file) # With mesh value collection we only store nonzero tags mvc = MeshValueCollection('size_t', mesh, f.dim()) # Fill fill_mvc_from_mf(f, mvc) # And save out.write(mvc, name) return True
def mesh_around_1d(mesh, size=1, scale=10, padding=0.05): ''' From a 1d in xd (X > 1) mesh (in XML format) produce a Xd mesh where the 1d structure is embedded. Mesh size close to strucure should be size(given as multiple of hmin(), elsewhere scale * size. Padding controls size of the bounding box. ''' dot = mesh.find('.') root, ext = mesh[:dot], mesh[dot:] assert ext == '.xml' or ext == '.xml.gz', ext mesh = Mesh(mesh) gdim = mesh.geometry().dim() assert gdim > 1 and mesh.topology().dim() == 1 x = mesh.coordinates() mesh.init(1, 0) # Compute fall back mesh size: assert size > 0 size = mesh.hmin() * size # Don't allow zero padding - collision of lines with bdry segfaults # too ofter so we prevent it assert padding > 0 # Finally scale better be positive assert scale > 0 point = (lambda xi: tuple(xi) + (0, ))\ if gdim == 2 else (lambda xi: tuple(xi)) geo = '.'.join([root, 'geo']) with open(geo, 'w') as outfile: # Setup outfile.write('SetFactory("OpenCASCADE");\n') outfile.write('size = %g;\n' % size) outfile.write('SIZE = %g;\n' % (size * scale)) # Points fmt = 'Point(%d) = {%.16f, %.16f, %.16f, size};\n' for i, xi in enumerate(x, 1): outfile.write(fmt % ((i, ) + point(xi))) # Lines fmt = 'Line(%d) = {%d, %d};\n' for i, cell in enumerate(cells(mesh), 1): outfile.write(fmt % ((i, ) + tuple(cell.entities(0) + 1))) # BBox xmin, xmax = x.min(0), x.max(0) padding = (xmax - xmin) * padding / 2. xmin -= padding xmax += padding dx = xmax - xmin if gdim == 2 or dx[-1] < 1E-14: # All points are on a plane rect = 'Rectangle(1) = {%g, %g, %g, %g, %g};\n' % ( xmin[0], xmin[1], 0 if gdim == 2 else xmin[2], dx[0], dx[1]) outfile.write(rect) bbox = 'Surface' else: box = 'Box(1) = {%g, %g, %g, %g, %g, %g};\n' % ( xmin[0], xmin[1], xmin[2], dx[0], dx[1], dx[2]) outfile.write(box) bbox = 'Volume' # Crack for line in xrange(1, mesh.num_cells() + 1): outfile.write('Line{%d} In %s{1};\n' % (line, bbox)) # Add Physical volume/surface outfile.write('Physical %s(1) = {1};\n' % bbox) # Add Physical surface/line lines = ', '.join( map(lambda v: '%d' % v, xrange(1, mesh.num_cells() + 1))) outfile.write('Physical Line(1) = {%s};\n' % lines) return geo, gdim
args = parser.parse_args() h5_file = convert(args.input) # VTK visualize tags if args.save_pvd or args.mesh_size: h5 = HDF5File(mpi_comm_world(), h5_file, 'r') mesh = Mesh() h5.read(mesh, 'mesh', False) info('Mesh has %d cells' % mesh.num_cells()) info('Mesh has %d vertices' % mesh.num_vertices()) info('Box size %s' % (mesh.coordinates().max(axis=0) - mesh.coordinates().min(axis=0))) hmin, hmax = mesh.hmin(), mesh.hmax() info('Mesh has sizes %g %g' % (hmin, hmax)) root = os.path.splitext(args.input)[0] tdim = mesh.topology().dim() data_sets = ('curves', 'surfaces', 'volumes') dims = (1, tdim - 1, tdim) for ds, dim in zip(data_sets, dims): if h5.has_dataset(ds): f = MeshFunction('size_t', mesh, dim, 0) h5.read(f, ds) if args.save_pvd: File('%s_%s.pvd' % (root, ds)) << f
class FBVP: def __init__(self, mesh_name, parameters, alpha_range=None): # LOAD MESH AND PARAMETERS self.parameters = parameters self.mesh_name = mesh_name if not alpha_range: self.alpha_range = parameters.alpha_range else: self.alpha_range = alpha_range mesh_path = self.parameters.get_mesh_path() self.mesh = Mesh() with XDMFFile(mesh_path) as f: f.read(self.mesh) print(f'Mesh size= {self.mesh.hmax()}') # dimension of approximation space self.dim = len(self.mesh.coordinates()) print(f'Dimension of solution space is {self.dim}') self.V = FunctionSpace(self.mesh, 'CG', 1) # CG = P1 self.coords = self.mesh.coordinates()[dof_to_vertex_map(self.V)] self.T = self.parameters.T # final time self.w = TrialFunction(self.V) self.u = TestFunction(self.V) ####################################################################### # CONTROL SET CREATION self.control_set = np.linspace(self.alpha_range[0], self.alpha_range[1], self.parameters.control_set_size) self.control_set_size = len(self.control_set) print(f'Discretized control set has size {self.control_set_size}') ####################################################################### # BOUNDARY CONDITIONS parameters.set_boundary_conditions(self.mesh) self.boundary_markers = MeshFunction('size_t', self.mesh, 1) self.boundary_markers.set_all(4) # pylint: disable=no-member for i, omega in self.parameters.omegas.items(): omega.mark(self.boundary_markers, i) self.ds = Measure('ds', domain=self.mesh, subdomain_data=self.boundary_markers) self.dirichlet_bcs = [ DirichletBC(self.V, parameters.RHS_bound[j], self.boundary_markers, j) for j in self.parameters.regions["Dirichlet"] ] # Get indices of dirichlet and robin dofs self.dirichlet_nodes_list = set() self.dirichlet_nodes_dict = {} for j in self.parameters.regions["Dirichlet"]: bc = DirichletBC(self.V, Constant(0), self.boundary_markers, j) self.dirichlet_nodes_list |= set(bc.get_boundary_values().keys()) self.dirichlet_nodes_dict[j] = list( bc.get_boundary_values().keys()) self.robin_nodes_list = set() self.robin_nodes_dict = {} for j in self.parameters.regions["Robin"]: bc = DirichletBC(self.V, Constant(0), self.boundary_markers, j) self.robin_nodes_list |= set(bc.get_boundary_values().keys()) self.robin_nodes_dict[j] = list(bc.get_boundary_values().keys()) bc = DirichletBC(self.V, Constant(0), 'on_boundary') self.boundary_nodes_list = bc.get_boundary_values().keys() self.robint_nodes_list = set() self.robint_nodes_dict = {} for j in self.parameters.regions["RobinTime"]: bc = DirichletBC(self.V, Constant(0), self.boundary_markers, j) self.robint_nodes_list |= set(bc.get_boundary_values().keys()) self.robint_nodes_dict[j] = list(bc.get_boundary_values().keys()) ####################################################################### # ASSEMBLY time_start = time.process_time() self.assemble_diagonal_matrix() # auxilliary generic diagonal matrix # used for vector*matrix multiplication of dolfin matrices self.assemble_lumpedmm() # lumped mass matrix # which serves the role of identity operator self.assemble_laplacian() # discrete laplacian self.ad_data_path = f'out/{self.parameters.experiment}' Path(self.ad_data_path).mkdir(parents=True, exist_ok=True) self.timesteps = self.parameters.get_number_of_timesteps() self.assemble_HJBe() # assembly of explicit operators self.assemble_HJBi() # assembly of implicit operators self.assemble_RHS() # assembly of forcing term print('Final time assembly complete') print(f'Assembly took {time.process_time() - time_start} seconds') print('===========================================================') def assemble_diagonal_matrix(self): print("Assembling auxilliary diagonal matrix") """ Operator assembled to get the right sparameterssity pattern (non-zero terms can only exist on diagonal) """ mesh3 = UnitIntervalMesh(self.dim) V3 = FunctionSpace(mesh3, "DG", 0) wid = TrialFunction(V3) uid = TestFunction(V3) self.diag_matrix = assemble(uid * wid * dx) self.diag_matrix.zero() def assemble_lumpedmm(self): """ Assembly lumped mass matrix - equal to 0 on robin boundary since there is no time derivative there. """ print("Assembling lumped mass matrix") mass_form = self.w * self.u * dx mass_action_form = action(mass_form, Constant(1)) self.MM_terms = assemble(mass_action_form) for n in self.robint_nodes_list: self.MM_terms[n] = 1.0 for n in self.robin_nodes_list: self.MM_terms[n] = 0.0 self.mass_matrix = assemble(mass_form) self.mass_matrix.zero() self.mass_matrix.set_diagonal(self.MM_terms) self.scipy_mass_matrix = toscipy(self.mass_matrix) def assemble_laplacian(self): print("Assembling laplacians") # laplacian discretisation self.laplacian = assemble(dot(grad(self.w), grad(self.u)) * dx) def assemble_HJBe(self, t=None): """ Assembly explicit operator for every control in the control set, then apply artificial diffusion to all of them. Note that artificial diffusion is calculated differently on the boundary nodes. """ self.explicit_matrices = np.empty(self.control_set_size, dtype=object) self.explicit_diffusion = np.empty([self.control_set_size, self.dim]) diagonal_vector = Vector(self.mesh.mpi_comm(), self.dim) global_min_timestep = float('inf') # Create explicit operator for each control in control set for k, alpha in enumerate(self.control_set): if k % 10 == 0: print(f'Assembling explicit matrix under control {k}' f' out of {self.control_set_size}') # coefficients in the interior advection_x = self.parameters.adv_x(alpha) advection_y = self.parameters.adv_y(alpha) reaction = self.parameters.lin(alpha) if t is not None: advection_x.t = t advection_y.t = t reaction.t = t # Discretize PDE (set values on boundary rows to zero) b = np.array([advection_x, advection_y]) E_interior_form = (np.dot(b, grad(self.w)) + reaction * self.w) * self.u * dx explicit_matrix = assemble(E_interior_form) set_zero_rows(explicit_matrix, self.boundary_nodes_list) # Calculate diffusion necessary to make explicit operator monotone min_diffusion = np.zeros(explicit_matrix.size(0)) for rows, row_num in getrows(explicit_matrix, self.laplacian, ignore=self.boundary_nodes_list): min_diffusion[row_num] = calc_ad(rows, row_num) self.explicit_diffusion[k] = min_diffusion discrete_diffusion = apply_ad(self.laplacian, min_diffusion) explicit_matrix += discrete_diffusion for j in self.parameters.regions['RobinTime']: self.set_directional_derivative( explicit_matrix, region=j, nodes=self.robint_nodes_dict[j], control=alpha, time=t) explicit_matrix.get_diagonal(diagonal_vector) current_min_timestep = get_min_timestep( diagonal_vector, self.MM_terms, self.dirichlet_nodes_list | self.robin_nodes_list) global_min_timestep = min(current_min_timestep, global_min_timestep) self.explicit_matrices[k] = toscipy(explicit_matrix) ####################################################################### min_timesteps = int(self.T / global_min_timestep) + 1 if not self.timesteps or self.timesteps < min_timesteps: self.timesteps = min_timesteps try: filename = (f'meshes/{self.parameters.domain}/' f'Mvalues-{self.parameters.experiment}.json') with open(filename, 'r') as f: min_timesteps_dict = json.load(f) except FileNotFoundError: min_timesteps_dict = {} min_timesteps_dict[self.parameters.mesh_name] = self.timesteps with open(filename, 'w') as f: json.dump(min_timesteps_dict, f) self.timestep_size = self.T / self.timesteps # time step size self.parameters.calculate_save_interval() self.explicit_matrices = self.timestep_size * self.explicit_matrices - \ np.repeat(self.scipy_mass_matrix, self.control_set_size) print('Checking if the explicit operators satisfy' ' monotonicity conditions') for explicit_matrix in self.explicit_matrices: explicit_check(explicit_matrix, self.dirichlet_nodes_list) def assemble_RHS(self, t=None): """Assemble right hand side of the FBVP """ print('Assembling RHS') self.forcing_terms = np.empty([self.control_set_size, self.dim]) for i, alpha in enumerate(self.control_set): rhs = self.parameters.RHSt(alpha) if t is not None: rhs.t = t # Initialise forcing term F = np.array(assemble(rhs * self.u * dx)[:]) for j in self.parameters.regions['RobinTime']: rhs = self.parameters.RHS_bound[j](alpha) if t is not None: rhs.t = t bc = DirichletBC(self.V, rhs, self.boundary_markers, j) vals = bc.get_boundary_values() F[list(vals.keys())] = list(vals.values()) for j in self.parameters.regions['Robin']: rhs = self.parameters.RHS_bound[j](alpha) if t is not None: rhs.t = t bc = DirichletBC(self.V, rhs, self.boundary_markers, j) vals = bc.get_boundary_values() F[list(vals.keys())] = list(vals.values()) self.forcing_terms[i] = self.timestep_size * F def assemble_HJBi(self, t=None): """ Assembly matrix discretizing second order terms after diffusion moved to the explicit operator is subtracted. Whenever amount of diffusion used to make some row of an explicit operator monotonic exceeds the amount of natural diffusion at that node we call it artificial diffusion. In such case, this row of the implicit operator is multiplied by zero """ print('Assembling implicit operators') self.implicit_matrices = [] remaining_diffusion = Function(self.V) max_art_dif = 0.0 max_art_dif_loc = None diffusion_matrix = self.diag_matrix.copy() for explicit_diffusion, alpha in \ zip(self.explicit_diffusion, self.control_set): diffusion = self.parameters.diffusion(alpha) if t is not None: diffusion.t = t diff = interpolate(diffusion, self.V).vector() if not np.all(diff >= 0): raise Exception("Choose non-negative diffusion") diff_vec = np.array([ diff[i] if i not in self.boundary_nodes_list else 0.0 for i in range(self.dim) ]) artificial_diffusion = explicit_diffusion - diff_vec if np.amax(artificial_diffusion) > max_art_dif: max_art_dif = np.amax(artificial_diffusion) max_art_dif_loc = self.coords[np.argmax(artificial_diffusion)] # discretise second order terms remaining_diffusion.vector()[:] = np.maximum( -artificial_diffusion, [0] * self.dim) diffusion_matrix.set_diagonal(remaining_diffusion.vector()) implicit_matrix = matmult(diffusion_matrix, self.laplacian) for j in self.parameters.regions['Robin']: self.set_directional_derivative(implicit_matrix, region=j, nodes=self.robin_nodes_dict[j], control=alpha, time=t) self.implicit_matrices.append(self.timestep_size * implicit_matrix + self.mass_matrix) self.scipy_implicit_matrices = [ toscipy(mat) for mat in self.implicit_matrices ] print('Checking if the implicit operators satisfy' ' monotonicity conditions') for implicit_matrix in self.scipy_implicit_matrices: implicit_check(implicit_matrix) with open(self.ad_data_path + '/ad.txt', 'a') as f: time_str = f' at time {t}\n' if t is not None else '\n' f.write(f'For mesh {self.mesh_name} max value of artificial' ' diffusion coefficient was' f' {max_art_dif} at {max_art_dif_loc}' + time_str) def set_directional_derivative(self, operator, region, nodes, control, time=None): if region in self.parameters.regions['Robin']: adv_x = self.parameters.robin_adv_x[region](control) adv_y = self.parameters.robin_adv_y[region](control) lin = self.parameters.robin_lin[region](control) elif region in self.parameters.regions['RobinTime']: adv_x = self.parameters.robint_adv_x[region](control) adv_y = self.parameters.robint_adv_y[region](control) lin = self.parameters.robint_lin[region](control) if time is not None: adv_x.t = time adv_y.t = time lin.t = time b = (interpolate(adv_x, self.V), interpolate(adv_y, self.V)) c = interpolate(lin, self.V) for n in nodes: # node coordinates x = self.coords[n] # evaluate advection at robin node b_x = np.array([b[0].vector()[n], b[1].vector()[n]]) # denominator used to calculate directional derivative if np.linalg.norm(b_x) > 1: lamb = 0.1 * self.mesh.hmin() / np.linalg.norm(b_x) else: lamb = 0.1 * self.mesh.hmin() # position of first node of the stencil x_prev = x - lamb * b_x # Find cell containing first node of stencil and get its # dof/vertex coordinates try: cell_ind = self.mesh.bounding_box_tree( ).compute_entity_collisions(Point(x_prev))[0] except IndexError: i = 16 while i > 2: # sometimes Fenics does not detect nodes if boundary is # parallel to the boundary advection due to rounding errors # so try different precisions just to be sure try: cell_ind = self.mesh.bounding_box_tree( ).compute_entity_collisions(Point(np.round(x_prev, i)))[0] break except IndexError: i -= 1 else: raise Exception( "Boundary advection outside tangential cone") cell_vertices = self.mesh.cells()[cell_ind] cell_dofs = vertex_to_dof_map(self.V)[cell_vertices] cell_coords = self.mesh.coordinates()[cell_vertices] # calculate weigth of each vertex in the cell (using # barycentric coordinates) A = np.vstack((cell_coords.T, np.ones(3))) rhs = np.append(x_prev, np.ones(1)) weights = np.linalg.solve(A, rhs) weights = [w if w > 1e-14 else 0 for w in weights] dof_to_weight = dict(zip(cell_dofs, weights)) # calculate directional derivative at each node using # weights to interpolate value of numerical solution at # x_prev row = operator.getrow(n) indices = row[0] data = row[1] for dof in cell_dofs: pos = np.where(indices == dof)[0][0] if dof != n: data[pos] = -dof_to_weight[dof] / lamb else: c_n = c.vector()[dof] # make sure reaction term is positive adding artificial # constant if necessary if region in self.parameters.regions['Robin']: c_n = max(c_n, min(lamb, 1E-8)) data[pos] = (1 - dof_to_weight[dof]) / lamb + c_n operator.set([data], [n], indices) operator.apply('insert')