def test_assemble_derivatives():
    """This test checks the original_coefficient_positions, which may change
    under differentiation (some coefficients and constants are
    eliminated)"""
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12)
    Q = FunctionSpace(mesh, ("Lagrange", 1))
    u = Function(Q)
    v = ufl.TestFunction(Q)
    du = ufl.TrialFunction(Q)
    b = Function(Q)
    c1 = Constant(mesh, np.array([[1.0, 0.0], [3.0, 4.0]], PETSc.ScalarType))
    c2 = Constant(mesh, PETSc.ScalarType(2.0))

    b.x.array[:] = 2.0

    # derivative eliminates 'u' and 'c1'
    L = ufl.inner(c1, c1) * v * dx + c2 * b * inner(u, v) * dx
    a = form(derivative(L, u, du))

    A1 = assemble_matrix(a)
    A1.assemble()
    a = form(c2 * b * inner(du, v) * dx)
    A2 = assemble_matrix(a)
    A2.assemble()
    assert (A1 - A2).norm() == pytest.approx(0.0, rel=1e-12, abs=1e-12)
def test_basic_assembly_constant(mode):
    """Tests assembly with Constant

    The following test should be sensitive to order of flattening the
    matrix-valued constant.

    """
    mesh = create_unit_square(MPI.COMM_WORLD, 5, 5, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    c = Constant(mesh, np.array([[1.0, 2.0], [5.0, 3.0]], PETSc.ScalarType))

    a = inner(c[1, 0] * u, v) * dx + inner(c[1, 0] * u, v) * ds
    L = inner(c[1, 0], v) * dx + inner(c[1, 0], v) * ds
    a, L = form(a), form(L)

    # Initial assembly
    A1 = assemble_matrix(a)
    A1.assemble()

    b1 = assemble_vector(L)
    b1.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    c.value = [[1.0, 2.0], [3.0, 4.0]]

    A2 = assemble_matrix(a)
    A2.assemble()

    b2 = assemble_vector(L)
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    assert (A1 * 3.0 - A2 * 5.0).norm() == pytest.approx(0.0)
    assert (b1 * 3.0 - b2 * 5.0).norm() == pytest.approx(0.0)
Example #3
0
 def J_mono(self, snes, x, J, P):
     J.zeroEntries()
     assemble_matrix(J, self.a, bcs=self.bcs, diagonal=1.0)
     J.assemble()
     if self.a_precon is not None:
         P.zeroEntries()
         assemble_matrix(P, self.a_precon, bcs=self.bcs, diagonal=1.0)
         P.assemble()
Example #4
0
def test_assembly_dx_domains(mode, meshtags_factory):
    mesh = create_unit_square(MPI.COMM_WORLD, 10, 10, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    # Prepare a marking structures
    # indices cover all cells
    # values are [1, 2, 3, 3, ...]
    cell_map = mesh.topology.index_map(mesh.topology.dim)
    num_cells = cell_map.size_local + cell_map.num_ghosts
    indices = np.arange(0, num_cells)
    values = np.full(indices.shape, 3, dtype=np.intc)
    values[0] = 1
    values[1] = 2
    marker = meshtags_factory(mesh, mesh.topology.dim, indices, values)
    dx = ufl.Measure('dx', subdomain_data=marker, domain=mesh)
    w = Function(V)
    w.x.array[:] = 0.5

    # Assemble matrix
    a = form(w * ufl.inner(u, v) * (dx(1) + dx(2) + dx(3)))
    A = assemble_matrix(a)
    A.assemble()
    a2 = form(w * ufl.inner(u, v) * dx)
    A2 = assemble_matrix(a2)
    A2.assemble()
    assert (A - A2).norm() < 1.0e-12

    bc = dirichletbc(Function(V), range(30))

    # Assemble vector
    L = form(ufl.inner(w, v) * (dx(1) + dx(2) + dx(3)))
    b = assemble_vector(L)

    apply_lifting(b, [a], [[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])

    L2 = form(ufl.inner(w, v) * dx)
    b2 = assemble_vector(L2)
    apply_lifting(b2, [a], [[bc]])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                   mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, [bc])
    assert (b - b2).norm() < 1.0e-12

    # Assemble scalar
    L = form(w * (dx(1) + dx(2) + dx(3)))
    s = assemble_scalar(L)
    s = mesh.comm.allreduce(s, op=MPI.SUM)
    assert s == pytest.approx(0.5, 1.0e-12)
    L2 = form(w * dx)
    s2 = assemble_scalar(L2)
    s2 = mesh.comm.allreduce(s2, op=MPI.SUM)
    assert s == pytest.approx(s2, 1.0e-12)
def test_refine_create_form():
    """Check that forms can be assembled on refined mesh"""
    mesh = create_unit_cube(MPI.COMM_WORLD, 3, 3, 3)
    mesh.topology.create_entities(1)
    mesh = refine(mesh, redistribute=True)

    V = FunctionSpace(mesh, ("Lagrange", 1))

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = form(ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx)
    assemble_matrix(a)
def test_complex_assembly():
    """Test assembly of complex matrices and vectors"""

    mesh = create_unit_square(MPI.COMM_WORLD, 10, 10)
    P2 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 2)
    V = FunctionSpace(mesh, P2)
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    g = -2 + 3.0j
    j = 1.0j

    a_real = form(inner(u, v) * dx)
    L1 = form(inner(g, v) * dx)

    b = assemble_vector(L1)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    bnorm = b.norm(PETSc.NormType.N1)
    b_norm_ref = abs(-2 + 3.0j)
    assert bnorm == pytest.approx(b_norm_ref)

    A = assemble_matrix(a_real)
    A.assemble()
    A0_norm = A.norm(PETSc.NormType.FROBENIUS)

    x = ufl.SpatialCoordinate(mesh)

    a_imag = form(j * inner(u, v) * dx)
    f = 1j * ufl.sin(2 * np.pi * x[0])
    L0 = form(inner(f, v) * dx)
    A = assemble_matrix(a_imag)
    A.assemble()
    A1_norm = A.norm(PETSc.NormType.FROBENIUS)
    assert A0_norm == pytest.approx(A1_norm)

    b = assemble_vector(L0)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    b1_norm = b.norm(PETSc.NormType.N2)

    a_complex = form((1 + j) * inner(u, v) * dx)
    f = ufl.sin(2 * np.pi * x[0])
    L2 = form(inner(f, v) * dx)
    A = assemble_matrix(a_complex)
    A.assemble()
    A2_norm = A.norm(PETSc.NormType.FROBENIUS)
    assert A1_norm == pytest.approx(A2_norm / np.sqrt(2))
    b = assemble_vector(L2)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    b2_norm = b.norm(PETSc.NormType.N2)
    assert b2_norm == pytest.approx(b1_norm)
def test_assemble_manifold():
    """Test assembly of poisson problem on a mesh with topological
    dimension 1 but embedded in 2D (gdim=2)"""
    points = np.array([[0.0, 0.0], [0.2, 0.0], [0.4, 0.0], [0.6, 0.0],
                       [0.8, 0.0], [1.0, 0.0]],
                      dtype=np.float64)
    cells = np.array([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]], dtype=np.int32)
    cell = ufl.Cell("interval", geometric_dimension=points.shape[1])
    domain = ufl.Mesh(ufl.VectorElement("Lagrange", cell, 1))
    mesh = create_mesh(MPI.COMM_WORLD, cells, points, domain)
    assert mesh.geometry.dim == 2
    assert mesh.topology.dim == 1

    U = FunctionSpace(mesh, ("P", 1))
    u, v = ufl.TrialFunction(U), ufl.TestFunction(U)
    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx(mesh)
    L = ufl.inner(1.0, v) * ufl.dx(mesh)
    a, L = form(a), form(L)

    bcdofs = locate_dofs_geometrical(U, lambda x: np.isclose(x[0], 0.0))
    bcs = [dirichletbc(PETSc.ScalarType(0), bcdofs, U)]
    A = assemble_matrix(a, bcs=bcs)
    A.assemble()

    b = assemble_vector(L)
    apply_lifting(b, [a], bcs=[bcs])
    set_bc(b, bcs)

    assert np.isclose(b.norm(), 0.41231)
    assert np.isclose(A.norm(), 25.0199)
def test_assembly_bcs(mode):
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = inner(u, v) * dx + inner(u, v) * ds
    L = inner(1.0, v) * dx
    a, L = form(a), form(L)

    bdofsV = locate_dofs_geometrical(
        V,
        lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))
    bc = dirichletbc(PETSc.ScalarType(1), bdofsV, V)

    # Assemble and apply 'global' lifting of bcs
    A = assemble_matrix(a)
    A.assemble()
    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    g = b.duplicate()
    with g.localForm() as g_local:
        g_local.set(0.0)
    set_bc(g, [bc])
    f = b - A * g
    set_bc(f, [bc])

    # Assemble vector and apply lifting of bcs during assembly
    b_bc = assemble_vector(L)
    apply_lifting(b_bc, [a], [[bc]])
    b_bc.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b_bc, [bc])

    assert (f - b_bc).norm() == pytest.approx(0.0, rel=1e-12, abs=1e-12)
def test_vector_assemble_matrix_interior():
    mesh = create_unit_square(MPI.COMM_WORLD, 3, 3)
    V = VectorFunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = form(ufl.inner(ufl.jump(u), ufl.jump(v)) * ufl.dS)
    A = assemble_matrix(a)
    A.assemble()
Example #10
0
def test_nullspace_check(mesh, degree):
    V = VectorFunctionSpace(mesh, ('Lagrange', degree))
    u, v = TrialFunction(V), TestFunction(V)

    E, nu = 2.0e2, 0.3
    mu = E / (2.0 * (1.0 + nu))
    lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))

    def sigma(w, gdim):
        return 2.0 * mu * ufl.sym(grad(w)) + lmbda * ufl.tr(
            grad(w)) * ufl.Identity(gdim)

    a = form(inner(sigma(u, mesh.geometry.dim), grad(v)) * dx)

    # Assemble matrix and create compatible vector
    A = assemble_matrix(a)
    A.assemble()

    # Create null space basis and test
    nullspace = build_elastic_nullspace(V)
    la.orthonormalize(nullspace)
    ns = PETSc.NullSpace().create(vectors=nullspace)
    assert ns.test(A)

    # Create incorrect null space basis and test
    nullspace = build_broken_elastic_nullspace(V)
    la.orthonormalize(nullspace)
    ns = PETSc.NullSpace().create(vectors=nullspace)
    assert not ns.test(A)
Example #11
0
def test_krylov_solver_lu():

    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = TrialFunction(V), TestFunction(V)

    a = form(inner(u, v) * dx)
    L = form(inner(1.0, v) * dx)
    A = assemble_matrix(a)
    A.assemble()
    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    norm = 13.0

    solver = PETSc.KSP().create(mesh.comm)
    solver.setOptionsPrefix("test_lu_")
    opts = PETSc.Options("test_lu_")
    opts["ksp_type"] = "preonly"
    opts["pc_type"] = "lu"
    solver.setFromOptions()
    x = A.createVecRight()
    solver.setOperators(A)
    solver.solve(b, x)

    # *Tight* tolerance for LU solves
    assert x.norm(PETSc.NormType.N2) == pytest.approx(norm, abs=1.0e-12)
Example #12
0
    def amg_solve(N, method):
        # Elasticity parameters
        E = 1.0e9
        nu = 0.3
        mu = E / (2.0 * (1.0 + nu))
        lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))

        # Stress computation
        def sigma(v):
            return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(
                grad(v))) * Identity(2)

        # Define problem
        mesh = create_unit_square(MPI.COMM_WORLD, N, N)
        V = VectorFunctionSpace(mesh, 'Lagrange', 1)
        u = TrialFunction(V)
        v = TestFunction(V)

        facetdim = mesh.topology.dim - 1
        bndry_facets = locate_entities_boundary(
            mesh, facetdim, lambda x: np.full(x.shape[1], True))
        bdofs = locate_dofs_topological(V.sub(0), V, facetdim, bndry_facets)
        bc = dirichletbc(PETSc.ScalarType(0), bdofs, V.sub(0))

        # Forms
        a, L = inner(sigma(u), grad(v)) * dx, dot(ufl.as_vector(
            (1.0, 1.0)), v) * dx

        # Assemble linear algebra objects
        A = assemble_matrix(a, [bc])
        A.assemble()
        b = assemble_vector(L)
        apply_lifting(b, [a], [[bc]])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, [bc])

        # Create solution function
        u = Function(V)

        # Create near null space basis and orthonormalize
        null_space = build_nullspace(V, u.vector)

        # Attached near-null space to matrix
        A.set_near_nullspace(null_space)

        # Test that basis is orthonormal
        assert null_space.is_orthonormal()

        # Create PETSC smoothed aggregation AMG preconditioner, and
        # create CG solver
        solver = PETSc.KSP().create(mesh.comm)
        solver.setType("cg")

        # Set matrix operator
        solver.setOperators(A)

        # Compute solution and return number of iterations
        return solver.solve(b, u.vector)
Example #13
0
def run_scalar_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[1]**p, where p is the
    degree of the Lagrange function space.

    """
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    # Get quadrature degree for bilinear form integrand (ignores effect of non-affine map)
    a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
    a.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a)
    a = form(a)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree
    f = -div(grad(u_exact))

    # Set quadrature degree for linear form integrand (ignores effect of non-affine map)
    L = inner(f, v) * dx(metadata={"quadrature_degree": -1})
    L.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L)
    L = form(L)

    u_bc = Function(V)
    u_bc.interpolate(lambda x: x[1]**degree)

    # Create Dirichlet boundary condition
    facetdim = mesh.topology.dim - 1
    mesh.topology.create_connectivity(facetdim, mesh.topology.dim)
    bndry_facets = np.where(
        np.array(compute_boundary_facets(mesh.topology)) == 1)[0]
    bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
    bc = dirichletbc(u_bc, bdofs)

    b = assemble_vector(L)
    apply_lifting(b, [a], bcs=[[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])

    a = form(a)
    A = assemble_matrix(a, bcs=[bc])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.x.scatter_forward()

    M = (u_exact - uh)**2 * dx
    M = form(M)
    error = mesh.comm.allreduce(assemble_scalar(M), op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
def test_basic_assembly(mode):
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    f = Function(V)
    f.x.array[:] = 10.0
    a = inner(f * u, v) * dx + inner(u, v) * ds
    L = inner(f, v) * dx + inner(2.0, v) * ds
    a, L = form(a), form(L)

    # Initial assembly
    A = assemble_matrix(a)
    A.assemble()
    assert isinstance(A, PETSc.Mat)
    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    assert isinstance(b, PETSc.Vec)

    # Second assembly
    normA = A.norm()
    A.zeroEntries()
    A = assemble_matrix(A, a)
    A.assemble()
    assert isinstance(A, PETSc.Mat)
    assert normA == pytest.approx(A.norm())
    normb = b.norm()
    with b.localForm() as b_local:
        b_local.set(0.0)
    b = assemble_vector(b, L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    assert isinstance(b, PETSc.Vec)
    assert normb == pytest.approx(b.norm())

    # Vector re-assembly - no zeroing (but need to zero ghost entries)
    with b.localForm() as b_local:
        b_local.array[b.local_size:] = 0.0
    assemble_vector(b, L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    assert 2.0 * normb == pytest.approx(b.norm())

    # Matrix re-assembly (no zeroing)
    assemble_matrix(A, a)
    A.assemble()
    assert 2.0 * normA == pytest.approx(A.norm())
def assemble_div_matrix(k, offset):
    mesh = create_quad_mesh(offset)
    V = FunctionSpace(mesh, ("DQ", k))
    W = FunctionSpace(mesh, ("RTCF", k + 1))
    u, w = ufl.TrialFunction(V), ufl.TestFunction(W)
    a = form(ufl.inner(u, ufl.div(w)) * ufl.dx)
    A = assemble_matrix(a)
    A.assemble()
    return A[:, :]
Example #16
0
def test_overlapping_bcs():
    """Test that, when boundaries condition overlap, the last provided
    boundary condition is applied"""
    n = 23
    mesh = create_unit_square(MPI.COMM_WORLD, n, n)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = form(inner(u, v) * dx)
    L = form(inner(1, v) * dx)

    dofs_left = locate_dofs_geometrical(V, lambda x: x[0] < 1.0 / (2.0 * n))
    dofs_top = locate_dofs_geometrical(V, lambda x: x[1] > 1.0 - 1.0 /
                                       (2.0 * n))
    dof_corner = np.array(list(set(dofs_left).intersection(set(dofs_top))),
                          dtype=np.int64)

    # Check only one dof pair is found globally
    assert len(set(np.concatenate(MPI.COMM_WORLD.allgather(dof_corner)))) == 1

    bcs = [
        dirichletbc(PETSc.ScalarType(0), dofs_left, V),
        dirichletbc(PETSc.ScalarType(123.456), dofs_top, V)
    ]

    A, b = create_matrix(a), create_vector(L)
    assemble_matrix(A, a, bcs=bcs)
    A.assemble()

    # Check the diagonal (only on the rank that owns the row)
    d = A.getDiagonal()
    if len(dof_corner) > 0 and dof_corner[0] < V.dofmap.index_map.size_local:
        assert np.isclose(d.array_r[dof_corner[0]], 1.0)

    with b.localForm() as b_loc:
        b_loc.set(0)
    assemble_vector(b, L)
    apply_lifting(b, [a], [bcs])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)
    b.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

    if len(dof_corner) > 0:
        with b.localForm() as b_loc:
            assert b_loc[dof_corner[0]] == 123.456
def test_assemble_empty_rank_mesh():
    """Assembly on mesh where some ranks are empty"""
    comm = MPI.COMM_WORLD
    cell_type = CellType.triangle
    domain = ufl.Mesh(
        ufl.VectorElement("Lagrange", ufl.Cell(cell_type.name), 1))

    def partitioner(comm, nparts, local_graph, num_ghost_nodes, ghosting):
        """Leave cells on the curent rank"""
        dest = np.full(len(cells), comm.rank, dtype=np.int32)
        return graph.create_adjacencylist(dest)

    if comm.rank == 0:
        # Put cells on rank 0
        cells = np.array([[0, 1, 2], [0, 2, 3]], dtype=np.int64)
        cells = graph.create_adjacencylist(cells)
        x = np.array([[0., 0.], [1., 0.], [1., 1.], [0., 1.]])
    else:
        # No cells onm other ranks
        cells = graph.create_adjacencylist(np.empty((0, 3), dtype=np.int64))
        x = np.empty((0, 2), dtype=np.float64)

    mesh = create_mesh(comm, cells, x, domain, GhostMode.none, partitioner)

    V = FunctionSpace(mesh, ("Lagrange", 2))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    f, k, zero = Function(V), Function(V), Function(V)
    f.x.array[:] = 10.0
    k.x.array[:] = 1.0
    zero.x.array[:] = 0.0
    a = form(inner(k * u, v) * dx + inner(zero * u, v) * ds)
    L = form(inner(f, v) * dx + inner(zero, v) * ds)
    M = form(2 * k * dx + k * ds)

    sum = comm.allreduce(assemble_scalar(M), op=MPI.SUM)
    assert sum == pytest.approx(6.0)

    # Assemble
    A = assemble_matrix(a)
    A.assemble()
    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    # Solve
    ksp = PETSc.KSP()
    ksp.create(mesh.comm)
    ksp.setOperators(A)
    ksp.setTolerances(rtol=1.0e-9, max_it=50)
    ksp.setFromOptions()
    x = b.copy()
    ksp.solve(b, x)

    assert np.allclose(x.array, 10.0)
def test_plus_minus_matrix(cell_type, pm1, pm2):
    """Test that ('+') and ('-') match up with the correct DOFs for DG functions"""
    results = []
    spaces = []
    orders = []
    for count in range(3):
        for agree in [True, False]:
            # Two cell mesh with randomly numbered points
            mesh, order = two_unit_cells(cell_type, agree, return_order=True)

            V = FunctionSpace(mesh, ("DG", 1))
            u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

            # Assemble matrices with combinations of + and - for a few
            # different numberings
            a = form(ufl.inner(u(pm1), v(pm2)) * ufl.dS)
            result = assemble_matrix(a, [])
            result.assemble()
            spaces.append(V)
            results.append(result)
            orders.append(order)

    # Check that the above matrices all have the same values, but
    # permuted due to differently ordered dofs
    dofmap0 = spaces[0].mesh.geometry.dofmap
    for result, space in zip(results[1:], spaces[1:]):
        # Get the data relating to two results
        dofmap1 = space.mesh.geometry.dofmap

        dof_order = []

        # For each cell
        for cell in range(2):
            # For each point in cell 0 in the first mesh
            for dof0, point0 in zip(spaces[0].dofmap.cell_dofs(cell),
                                    dofmap0.links(cell)):
                # Find the point in the cell 0 in the second mesh
                for dof1, point1 in zip(space.dofmap.cell_dofs(cell),
                                        dofmap1.links(cell)):
                    if np.allclose(spaces[0].mesh.geometry.x[point0],
                                   space.mesh.geometry.x[point1]):
                        break
                else:
                    # If no matching point found, fail
                    assert False

                dof_order.append((dof0, dof1))

        # For all dof pairs, check that entries in the matrix agree
        for a, b in dof_order:
            for c, d in dof_order:
                assert np.isclose(results[0][a, c], result[b, d])
def test_custom_mesh_loop_cffi_rank2(set_vals):
    """Test numba assembler for bilinear form"""

    mesh = create_unit_square(MPI.COMM_WORLD, 64, 64)
    V = FunctionSpace(mesh, ("Lagrange", 1))

    # Test against generated code and general assembler
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = form(inner(u, v) * dx)
    A0 = assemble_matrix(a)
    A0.assemble()

    A0.zeroEntries()
    start = time.time()
    assemble_matrix(A0, a)
    end = time.time()
    print("Time (C++, pass 2):", end - start)
    A0.assemble()

    # Unpack mesh and dofmap data
    num_owned_cells = mesh.topology.index_map(mesh.topology.dim).size_local
    num_cells = num_owned_cells + mesh.topology.index_map(
        mesh.topology.dim).num_ghosts
    x_dofs = mesh.geometry.dofmap.array.reshape(num_cells, 3)
    x = mesh.geometry.x
    dofmap = V.dofmap.list.array.reshape(num_cells,
                                         3).astype(np.dtype(PETSc.IntType))

    A1 = A0.copy()
    for i in range(2):
        A1.zeroEntries()
        start = time.time()
        assemble_matrix_cffi(A1.handle, (x_dofs, x), dofmap, num_owned_cells,
                             set_vals, PETSc.InsertMode.ADD_VALUES)
        end = time.time()
        print("Time (Numba, pass {}): {}".format(i, end - start))
        A1.assemble()

    assert (A1 - A0).norm() == pytest.approx(0.0)
def test_complex_assembly_solve():
    """Solve a positive definite helmholtz problem and verify solution
    with the method of manufactured solutions"""

    degree = 3
    mesh = create_unit_square(MPI.COMM_WORLD, 20, 20)
    P = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), degree)
    V = FunctionSpace(mesh, P)

    x = ufl.SpatialCoordinate(mesh)

    # Define source term
    A = 1.0 + 2.0 * (2.0 * np.pi)**2
    f = (1. + 1j) * A * ufl.cos(2 * np.pi * x[0]) * ufl.cos(2 * np.pi * x[1])

    # Variational problem
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    C = 1.0 + 1.0j
    a = form(C * inner(grad(u), grad(v)) * dx + C * inner(u, v) * dx)
    L = form(inner(f, v) * dx)

    # Assemble
    A = assemble_matrix(a)
    A.assemble()
    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    # Create solver
    solver = PETSc.KSP().create(mesh.comm)
    solver.setOptionsPrefix("test_lu_")
    opts = PETSc.Options("test_lu_")
    opts["ksp_type"] = "preonly"
    opts["pc_type"] = "lu"
    solver.setFromOptions()
    x = A.createVecRight()
    solver.setOperators(A)
    solver.solve(b, x)

    # Reference Solution
    def ref_eval(x):
        return np.cos(2 * np.pi * x[0]) * np.cos(2 * np.pi * x[1])
    u_ref = Function(V)
    u_ref.interpolate(ref_eval)

    diff = (x - u_ref.vector).norm(PETSc.NormType.N2)
    assert diff == pytest.approx(0.0, abs=1e-1)
def test_custom_mesh_loop_ctypes_rank2():
    """Test numba assembler for bilinear form"""

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 64, 64)
    V = FunctionSpace(mesh, ("Lagrange", 1))

    # Extract mesh and dofmap data
    num_owned_cells = mesh.topology.index_map(mesh.topology.dim).size_local
    num_cells = num_owned_cells + mesh.topology.index_map(
        mesh.topology.dim).num_ghosts
    x_dofs = mesh.geometry.dofmap.array.reshape(num_cells, 3)
    x = mesh.geometry.x
    dofmap = V.dofmap.list.array.reshape(num_cells,
                                         3).astype(np.dtype(PETSc.IntType))

    # Generated case with general assembler
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = form(inner(u, v) * dx)
    A0 = assemble_matrix(a)
    A0.assemble()
    A0.zeroEntries()

    start = time.time()
    dolfinx.fem.petsc.assemble_matrix(A0, a)
    end = time.time()
    print("Time (C++, pass 2):", end - start)
    A0.assemble()

    # Custom case
    A1 = A0.copy()
    for i in range(2):
        A1.zeroEntries()
        mat = A1.handle
        start = time.time()
        assemble_matrix_ctypes(mat, (x_dofs, x), dofmap, num_owned_cells,
                               MatSetValues_ctypes,
                               PETSc.InsertMode.ADD_VALUES)
        end = time.time()
        print("Time (numba, pass {}): {}".format(i, end - start))
        A1.assemble()

    assert (A0 - A1).norm() == pytest.approx(0.0, abs=1.0e-9)
def test_basic_interior_facet_assembly():
    mesh = create_rectangle(
        MPI.COMM_WORLD,
        [np.array([0.0, 0.0]), np.array([1.0, 1.0])], [5, 5],
        cell_type=CellType.triangle,
        ghost_mode=GhostMode.shared_facet)
    V = FunctionSpace(mesh, ("DG", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = ufl.inner(ufl.avg(u), ufl.avg(v)) * ufl.dS
    a = form(a)
    A = assemble_matrix(a)
    A.assemble()
    assert isinstance(A, PETSc.Mat)

    L = ufl.conj(ufl.avg(v)) * ufl.dS
    L = form(L)
    b = assemble_vector(L)
    b.assemble()
    assert isinstance(b, PETSc.Vec)
Example #23
0
def run_vector_test(mesh, V, degree):
    """Projection into H(div/curl) spaces"""
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = form(inner(u, v) * dx)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[0]**degree
    L = form(inner(u_exact, v[0]) * dx)

    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    A = assemble_matrix(a)
    A.assemble()

    # Create LU linear solver (Note: need to use a solver that
    # re-orders to handle pivots, e.g. not the PETSc built-in LU solver)
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType("preonly")
    solver.getPC().setType('lu')
    solver.setOperators(A)

    # Solve
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.x.scatter_forward()

    # Calculate error
    M = (u_exact - uh[0])**2 * dx
    for i in range(1, mesh.topology.dim):
        M += uh[i]**2 * dx
    M = form(M)

    error = mesh.comm.allreduce(assemble_scalar(M), op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
Example #24
0
def test_matrix_assembly_block_nl():
    """Test assembly of block matrices and vectors into (a) monolithic
    blocked structures, PETSc Nest structures, and monolithic structures
    in the nonlinear setting
    """
    mesh = create_unit_square(MPI.COMM_WORLD, 4, 8)
    p0, p1 = 1, 2
    P0 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p0)
    P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p1)
    V0 = FunctionSpace(mesh, P0)
    V1 = FunctionSpace(mesh, P1)

    def initial_guess_u(x):
        return np.sin(x[0]) * np.sin(x[1])

    def initial_guess_p(x):
        return -x[0]**2 - x[1]**3

    def bc_value(x):
        return np.cos(x[0]) * np.cos(x[1])

    facetdim = mesh.topology.dim - 1
    bndry_facets = locate_entities_boundary(
        mesh, facetdim,
        lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))

    u_bc = Function(V1)
    u_bc.interpolate(bc_value)
    bdofs = locate_dofs_topological(V1, facetdim, bndry_facets)
    bc = dirichletbc(u_bc, bdofs)

    # Define variational problem
    du, dp = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    u, p = Function(V0), Function(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    f = 1.0
    g = -3.0

    F0 = inner(u, v) * dx + inner(p, v) * dx - inner(f, v) * dx
    F1 = inner(u, q) * dx + inner(p, q) * dx - inner(g, q) * dx

    a_block = form([[derivative(F0, u, du),
                     derivative(F0, p, dp)],
                    [derivative(F1, u, du),
                     derivative(F1, p, dp)]])
    L_block = form([F0, F1])

    # Monolithic blocked
    x0 = create_vector_block(L_block)
    scatter_local_vectors(x0, [u.vector.array_r, p.vector.array_r],
                          [(u.function_space.dofmap.index_map,
                            u.function_space.dofmap.index_map_bs),
                           (p.function_space.dofmap.index_map,
                            p.function_space.dofmap.index_map_bs)])
    x0.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    # Ghosts are updated inside assemble_vector_block
    A0 = assemble_matrix_block(a_block, bcs=[bc])
    b0 = assemble_vector_block(L_block, a_block, bcs=[bc], x0=x0, scale=-1.0)
    A0.assemble()
    assert A0.getType() != "nest"
    Anorm0 = A0.norm()
    bnorm0 = b0.norm()

    # Nested (MatNest)
    x1 = create_vector_nest(L_block)
    for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)):
        x1_sub, soln_sub = x1_soln_pair
        soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                    mode=PETSc.ScatterMode.FORWARD)
        soln_sub.vector.copy(result=x1_sub)
        x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                           mode=PETSc.ScatterMode.FORWARD)

    A1 = assemble_matrix_nest(a_block, bcs=[bc])
    b1 = assemble_vector_nest(L_block)
    apply_lifting_nest(b1, a_block, bcs=[bc], x0=x1, scale=-1.0)
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    bcs0 = bcs_by_block([L.function_spaces[0] for L in L_block], [bc])

    set_bc_nest(b1, bcs0, x1, scale=-1.0)
    A1.assemble()

    assert A1.getType() == "nest"
    assert nest_matrix_norm(A1) == pytest.approx(Anorm0, 1.0e-12)
    assert b1.norm() == pytest.approx(bnorm0, 1.0e-12)

    # Monolithic version
    E = P0 * P1
    W = FunctionSpace(mesh, E)
    dU = ufl.TrialFunction(W)
    U = Function(W)
    u0, u1 = ufl.split(U)
    v0, v1 = ufl.TestFunctions(W)

    U.sub(0).interpolate(initial_guess_u)
    U.sub(1).interpolate(initial_guess_p)

    F = inner(u0, v0) * dx + inner(u1, v0) * dx + inner(u0, v1) * dx + inner(u1, v1) * dx \
        - inner(f, v0) * ufl.dx - inner(g, v1) * dx
    J = derivative(F, U, dU)
    F, J = form(F), form(J)

    bdofsW_V1 = locate_dofs_topological((W.sub(1), V1), facetdim, bndry_facets)

    bc = dirichletbc(u_bc, bdofsW_V1, W.sub(1))
    A2 = assemble_matrix(J, bcs=[bc])
    A2.assemble()
    b2 = assemble_vector(F)
    apply_lifting(b2, [J], bcs=[[bc]], x0=[U.vector], scale=-1.0)
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, [bc], x0=U.vector, scale=-1.0)
    assert A2.getType() != "nest"
    assert A2.norm() == pytest.approx(Anorm0, 1.0e-12)
    assert b2.norm() == pytest.approx(bnorm0, 1.0e-12)
Example #25
0
 def J(self, x, A):
     """Assemble Jacobian matrix."""
     A.zeroEntries()
     assemble_matrix(A, self.a, bcs=[self.bc])
     A.assemble()
def test_eigen_assembly(tempdir):  # noqa: F811
    """Compare assembly into scipy.CSR matrix with PETSc assembly"""
    def compile_eigen_csr_assembler_module():
        dolfinx_pc = dolfinx.pkgconfig.parse("dolfinx")
        eigen_dir = dolfinx.pkgconfig.parse("eigen3")["include_dirs"]
        cpp_code_header = f"""
<%
setup_pybind11(cfg)
cfg['include_dirs'] = {dolfinx_pc["include_dirs"] + [petsc4py.get_include()]
  + [pybind11.get_include()] + [str(pybind_inc())] + eigen_dir}
cfg['compiler_args'] = ["-std=c++17", "-Wno-comment"]
cfg['libraries'] = {dolfinx_pc["libraries"]}
cfg['library_dirs'] = {dolfinx_pc["library_dirs"]}
%>
"""

        cpp_code = """
#include <pybind11/pybind11.h>
#include <pybind11/eigen.h>
#include <pybind11/stl.h>
#include <vector>
#include <Eigen/Sparse>
#include <petscsys.h>
#include <dolfinx/fem/assembler.h>
#include <dolfinx/fem/DirichletBC.h>
#include <dolfinx/fem/Form.h>

template<typename T>
Eigen::SparseMatrix<T, Eigen::RowMajor>
assemble_csr(const dolfinx::fem::Form<T>& a,
             const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<T>>>& bcs)
{
  std::vector<Eigen::Triplet<T>> triplets;
  auto mat_add
      = [&triplets](const xtl::span<const std::int32_t>& rows,
                    const xtl::span<const std::int32_t>& cols,
                    const xtl::span<const T>& v)
    {
      for (std::size_t i = 0; i < rows.size(); ++i)
        for (std::size_t j = 0; j < cols.size(); ++j)
          triplets.emplace_back(rows[i], cols[j], v[i * cols.size() + j]);
      return 0;
    };

  dolfinx::fem::assemble_matrix(mat_add, a, bcs);

  auto map0 = a.function_spaces().at(0)->dofmap()->index_map;
  int bs0 = a.function_spaces().at(0)->dofmap()->index_map_bs();
  auto map1 = a.function_spaces().at(1)->dofmap()->index_map;
  int bs1 = a.function_spaces().at(1)->dofmap()->index_map_bs();
  Eigen::SparseMatrix<T, Eigen::RowMajor> mat(
      bs0 * (map0->size_local() + map0->num_ghosts()),
      bs1 * (map1->size_local() + map1->num_ghosts()));
  mat.setFromTriplets(triplets.begin(), triplets.end());
  return mat;
}

PYBIND11_MODULE(eigen_csr, m)
{
  m.def("assemble_matrix", &assemble_csr<PetscScalar>);
}
"""

        path = pathlib.Path(tempdir)
        open(pathlib.Path(tempdir, "eigen_csr.cpp"),
             "w").write(cpp_code + cpp_code_header)
        rel_path = path.relative_to(pathlib.Path(__file__).parent)
        p = str(rel_path).replace("/", ".") + ".eigen_csr"
        return cppimport.imp(p)

    def assemble_csr_matrix(a, bcs):
        """Assemble bilinear form into an SciPy CSR matrix, in serial."""
        module = compile_eigen_csr_assembler_module()
        A = module.assemble_matrix(a, bcs)
        if a.function_spaces[0] is a.function_spaces[1]:
            for bc in bcs:
                if a.function_spaces[0].contains(bc.function_space):
                    bc_dofs, _ = bc.dof_indices()
                    # See https://github.com/numpy/numpy/issues/14132
                    # for why we copy bc_dofs as a work-around
                    dofs = bc_dofs.copy()
                    A[dofs, dofs] = 1.0
        return A

    mesh = create_unit_square(MPI.COMM_SELF, 12, 12)
    Q = FunctionSpace(mesh, ("Lagrange", 1))
    u = ufl.TrialFunction(Q)
    v = ufl.TestFunction(Q)
    a = form(ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx)

    bdofsQ = locate_dofs_geometrical(
        Q,
        lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))
    bc = dirichletbc(PETSc.ScalarType(1), bdofsQ, Q)

    A1 = assemble_matrix(a, [bc])
    A1.assemble()
    A2 = assemble_csr_matrix(a, [bc])
    assert np.isclose(A1.norm(), scipy.sparse.linalg.norm(A2))
Example #27
0
 def J(self, snes, x, J, P):
     """Assemble Jacobian matrix."""
     J.zeroEntries()
     assemble_matrix(J, self.a, bcs=[self.bc])
     J.assemble()
Example #28
0
def run_dg_test(mesh, V, degree):
    """Manufactured Poisson problem, solving u = x[component]**n, where n is the
    degree of the Lagrange function space.
    """
    u, v = TrialFunction(V), TestFunction(V)

    # Exact solution
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree

    # Coefficient
    k = Function(V)
    k.x.array[:] = 2.0

    # Source term
    f = -div(k * grad(u_exact))

    # Mesh normals and element size
    n = FacetNormal(mesh)
    h = CellDiameter(mesh)
    h_avg = (h("+") + h("-")) / 2.0

    # Penalty parameter
    alpha = 32

    dx_ = dx(metadata={"quadrature_degree": -1})
    ds_ = ds(metadata={"quadrature_degree": -1})
    dS_ = dS(metadata={"quadrature_degree": -1})

    a = inner(k * grad(u), grad(v)) * dx_ \
        - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \
        - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \
        + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \
        - inner(k * grad(u), v * n) * ds_ \
        - inner(u * n, k * grad(v)) * ds_ \
        + (alpha / h) * inner(k * u, v) * ds_
    L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \
        + (alpha / h) * inner(k * u_exact, v) * ds_

    for integral in a.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            a)
    for integral in L.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            L)

    a, L = form(a), form(L)

    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    A = assemble_matrix(a, [])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    # Solve
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.x.scatter_forward()

    # Calculate error
    M = (u_exact - uh)**2 * dx
    M = form(M)

    error = mesh.comm.allreduce(assemble_scalar(M), op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
Example #29
0
def test_biharmonic():
    """Manufactured biharmonic problem.

    Solved using rotated Regge mixed finite element method. This is equivalent
    to the Hellan-Herrmann-Johnson (HHJ) finite element method in
    two-dimensions."""
    mesh = create_rectangle(
        MPI.COMM_WORLD,
        [np.array([0.0, 0.0]), np.array([1.0, 1.0])], [32, 32],
        CellType.triangle)

    element = ufl.MixedElement([
        ufl.FiniteElement("Regge", ufl.triangle, 1),
        ufl.FiniteElement("Lagrange", ufl.triangle, 2)
    ])

    V = FunctionSpace(mesh, element)
    sigma, u = ufl.TrialFunctions(V)
    tau, v = ufl.TestFunctions(V)

    x = ufl.SpatialCoordinate(mesh)
    u_exact = ufl.sin(ufl.pi * x[0]) * ufl.sin(ufl.pi * x[0]) * ufl.sin(
        ufl.pi * x[1]) * ufl.sin(ufl.pi * x[1])
    f_exact = div(grad(div(grad(u_exact))))
    sigma_exact = grad(grad(u_exact))

    # sigma and tau are tangential-tangential continuous according to the
    # H(curl curl) continuity of the Regge space. However, for the biharmonic
    # problem we require normal-normal continuity H (div div). Theorem 4.2 of
    # Lizao Li's PhD thesis shows that the latter space can be constructed by
    # the former through the action of the operator S:
    def S(tau):
        return tau - ufl.Identity(2) * ufl.tr(tau)

    sigma_S = S(sigma)
    tau_S = S(tau)

    # Discrete duality inner product eq. 4.5 Lizao Li's PhD thesis
    def b(tau_S, v):
        n = FacetNormal(mesh)
        return inner(tau_S, grad(grad(v))) * dx \
            - ufl.dot(ufl.dot(tau_S('+'), n('+')), n('+')) * jump(grad(v), n) * dS \
            - ufl.dot(ufl.dot(tau_S, n), n) * ufl.dot(grad(v), n) * ds

    # Non-symmetric formulation
    a = form(inner(sigma_S, tau_S) * dx - b(tau_S, u) + b(sigma_S, v))
    L = form(inner(f_exact, v) * dx)

    V_1 = V.sub(1).collapse()[0]
    zero_u = Function(V_1)
    zero_u.x.array[:] = 0.0

    # Strong (Dirichlet) boundary condition
    boundary_facets = locate_entities_boundary(
        mesh, mesh.topology.dim - 1,
        lambda x: np.full(x.shape[1], True, dtype=bool))
    boundary_dofs = locate_dofs_topological(
        (V.sub(1), V_1), mesh.topology.dim - 1, boundary_facets)

    bcs = [dirichletbc(zero_u, boundary_dofs, V.sub(1))]

    A = assemble_matrix(a, bcs=bcs)
    A.assemble()
    b = assemble_vector(L)
    apply_lifting(b, [a], bcs=[bcs])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)

    # Solve
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    PETSc.Options()["ksp_type"] = "preonly"
    PETSc.Options()["pc_type"] = "lu"
    # PETSc.Options()["pc_factor_mat_solver_type"] = "mumps"
    solver.setFromOptions()
    solver.setOperators(A)

    x_h = Function(V)
    solver.solve(b, x_h.vector)
    x_h.x.scatter_forward()

    # Recall that x_h has flattened indices.
    u_error_numerator = np.sqrt(
        mesh.comm.allreduce(assemble_scalar(
            form(
                inner(u_exact - x_h[4], u_exact - x_h[4]) *
                dx(mesh, metadata={"quadrature_degree": 5}))),
                            op=MPI.SUM))
    u_error_denominator = np.sqrt(
        mesh.comm.allreduce(assemble_scalar(
            form(
                inner(u_exact, u_exact) *
                dx(mesh, metadata={"quadrature_degree": 5}))),
                            op=MPI.SUM))

    assert np.absolute(u_error_numerator / u_error_denominator) < 0.05

    # Reconstruct tensor from flattened indices.
    # Apply inverse transform. In 2D we have S^{-1} = S.
    sigma_h = S(ufl.as_tensor([[x_h[0], x_h[1]], [x_h[2], x_h[3]]]))
    sigma_error_numerator = np.sqrt(
        mesh.comm.allreduce(assemble_scalar(
            form(
                inner(sigma_exact - sigma_h, sigma_exact - sigma_h) *
                dx(mesh, metadata={"quadrature_degree": 5}))),
                            op=MPI.SUM))
    sigma_error_denominator = np.sqrt(
        mesh.comm.allreduce(assemble_scalar(
            form(
                inner(sigma_exact, sigma_exact) *
                dx(mesh, metadata={"quadrature_degree": 5}))),
                            op=MPI.SUM))

    assert np.absolute(sigma_error_numerator / sigma_error_denominator) < 0.005
Example #30
0
def test_curl_curl_eigenvalue(family, order):
    """curl curl eigenvalue problem.

    Solved using H(curl)-conforming finite element method.
    See https://www-users.cse.umn.edu/~arnold/papers/icm2002.pdf for details.
    """
    slepc4py = pytest.importorskip("slepc4py")  # noqa: F841
    from slepc4py import SLEPc

    mesh = create_rectangle(
        MPI.COMM_WORLD,
        [np.array([0.0, 0.0]), np.array([np.pi, np.pi])], [24, 24],
        CellType.triangle)

    element = ufl.FiniteElement(family, ufl.triangle, order)
    V = FunctionSpace(mesh, element)

    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)

    a = inner(ufl.curl(u), ufl.curl(v)) * dx
    b = inner(u, v) * dx

    boundary_facets = locate_entities_boundary(
        mesh, mesh.topology.dim - 1,
        lambda x: np.full(x.shape[1], True, dtype=bool))
    boundary_dofs = locate_dofs_topological(V, mesh.topology.dim - 1,
                                            boundary_facets)

    zero_u = Function(V)
    zero_u.x.array[:] = 0.0
    bcs = [dirichletbc(zero_u, boundary_dofs)]

    a, b = form(a), form(b)

    A = assemble_matrix(a, bcs=bcs)
    A.assemble()

    B = assemble_matrix(b, bcs=bcs, diagonal=0.01)
    B.assemble()

    eps = SLEPc.EPS().create()
    eps.setOperators(A, B)
    PETSc.Options()["eps_type"] = "krylovschur"
    PETSc.Options()["eps_gen_hermitian"] = ""
    PETSc.Options()["eps_target_magnitude"] = ""
    PETSc.Options()["eps_target"] = 5.0
    PETSc.Options()["eps_view"] = ""
    PETSc.Options()["eps_nev"] = 12
    eps.setFromOptions()
    eps.solve()

    num_converged = eps.getConverged()
    eigenvalues_unsorted = np.zeros(num_converged, dtype=np.complex128)

    for i in range(0, num_converged):
        eigenvalues_unsorted[i] = eps.getEigenvalue(i)

    assert np.isclose(np.imag(eigenvalues_unsorted), 0.0).all()
    eigenvalues_sorted = np.sort(np.real(eigenvalues_unsorted))[:-1]
    eigenvalues_sorted = eigenvalues_sorted[np.logical_not(
        eigenvalues_sorted < 1E-8)]

    eigenvalues_exact = np.array([1.0, 1.0, 2.0, 4.0, 4.0, 5.0, 5.0, 8.0, 9.0])
    assert np.isclose(eigenvalues_sorted[0:eigenvalues_exact.shape[0]],
                      eigenvalues_exact,
                      rtol=1E-2).all()