Example #1
0
def test_assembly_ds_domains(mesh):
    V = dolfinx.FunctionSpace(mesh, ("CG", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    marker = dolfinx.MeshFunction("size_t", mesh, mesh.topology.dim - 1, 0)

    def bottom(x):
        return numpy.isclose(x[1], 0.0)

    def top(x):
        return numpy.isclose(x[1], 1.0)

    def left(x):
        return numpy.isclose(x[0], 0.0)

    def right(x):
        return numpy.isclose(x[0], 1.0)

    marker.mark(bottom, 111)
    marker.mark(top, 222)
    marker.mark(left, 333)
    marker.mark(right, 444)

    ds = ufl.Measure('ds', subdomain_data=marker, domain=mesh)

    w = dolfinx.Function(V)
    with w.vector.localForm() as w_local:
        w_local.set(0.5)

    # Assemble matrix
    a = w * ufl.inner(u, v) * (ds(111) + ds(222) + ds(333) + ds(444))
    A = dolfinx.fem.assemble_matrix(a)
    A.assemble()
    norm1 = A.norm()
    a2 = w * ufl.inner(u, v) * ds
    A2 = dolfinx.fem.assemble_matrix(a2)
    A2.assemble()
    norm2 = A2.norm()
    assert norm1 == pytest.approx(norm2, 1.0e-12)

    # Assemble vector
    L = ufl.inner(w, v) * (ds(111) + ds(222) + ds(333) + ds(444))
    b = dolfinx.fem.assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    L2 = ufl.inner(w, v) * ds
    b2 = dolfinx.fem.assemble_vector(L2)
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    assert b.norm() == pytest.approx(b2.norm(), 1.0e-12)

    # Assemble scalar
    L = w * (ds(111) + ds(222) + ds(333) + ds(444))
    s = dolfinx.fem.assemble_scalar(L)
    s = dolfinx.MPI.sum(mesh.mpi_comm(), s)
    L2 = w * ds
    s2 = dolfinx.fem.assemble_scalar(L2)
    s2 = dolfinx.MPI.sum(mesh.mpi_comm(), s2)
    assert (s == pytest.approx(s2, 1.0e-12)
            and 2.0 == pytest.approx(s, 1.0e-12))
Example #2
0
def test_assembly_solve_taylor_hood(mesh):
    """Assemble Stokes problem with Taylor-Hood elements and solve."""
    gdim = mesh.geometry.dim
    P2 = dolfinx.function.VectorFunctionSpace(mesh, ("Lagrange", 2))
    P1 = dolfinx.function.FunctionSpace(mesh, ("Lagrange", 1))

    def boundary0(x):
        """Define boundary x = 0"""
        return x[0] < 10 * numpy.finfo(float).eps

    def boundary1(x):
        """Define boundary x = 1"""
        return x[0] > (1.0 - 10 * numpy.finfo(float).eps)

    def initial_guess_u(x):
        u_init = numpy.row_stack((numpy.sin(x[0]) * numpy.sin(x[1]),
                                  numpy.cos(x[0]) * numpy.cos(x[1])))
        if gdim == 3:
            u_init = numpy.row_stack((u_init, numpy.cos(x[2])))
        return u_init

    def initial_guess_p(x):
        return -x[0]**2 - x[1]**3

    u_bc_0 = dolfinx.Function(P2)
    u_bc_0.interpolate(
        lambda x: numpy.row_stack(tuple(x[j] + float(j) for j in range(gdim))))

    u_bc_1 = dolfinx.Function(P2)
    u_bc_1.interpolate(
        lambda x: numpy.row_stack(tuple(numpy.sin(x[j]) for j in range(gdim))))

    facetdim = mesh.topology.dim - 1
    mf = dolfinx.MeshFunction("size_t", mesh, facetdim, 0)
    mf.mark(boundary0, 1)
    mf.mark(boundary1, 2)
    bndry_facets0 = numpy.where(mf.values == 1)[0]
    bndry_facets1 = numpy.where(mf.values == 2)[0]

    bdofs0 = dolfinx.fem.locate_dofs_topological(P2, facetdim, bndry_facets0)
    bdofs1 = dolfinx.fem.locate_dofs_topological(P2, facetdim, bndry_facets1)

    bcs = [
        dolfinx.DirichletBC(u_bc_0, bdofs0),
        dolfinx.DirichletBC(u_bc_1, bdofs1)
    ]

    u, p = dolfinx.Function(P2), dolfinx.Function(P1)
    du, dp = ufl.TrialFunction(P2), ufl.TrialFunction(P1)
    v, q = ufl.TestFunction(P2), ufl.TestFunction(P1)

    F = [
        inner(ufl.grad(u), ufl.grad(v)) * dx + inner(p, ufl.div(v)) * dx,
        inner(ufl.div(u), q) * dx
    ]
    J = [[derivative(F[0], u, du),
          derivative(F[0], p, dp)],
         [derivative(F[1], u, du),
          derivative(F[1], p, dp)]]
    P = [[J[0][0], None], [None, inner(dp, q) * dx]]

    # -- Blocked and monolithic

    Jmat0 = dolfinx.fem.create_matrix_block(J)
    Pmat0 = dolfinx.fem.create_matrix_block(P)
    Fvec0 = dolfinx.fem.create_vector_block(F)

    snes = PETSc.SNES().create(dolfinx.MPI.comm_world)
    snes.setTolerances(rtol=1.0e-15, max_it=10)

    snes.getKSP().setType("minres")
    snes.getKSP().getPC().setType("lu")
    snes.getKSP().getPC().setFactorSolverType("mumps")

    problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs, P=P)
    snes.setFunction(problem.F_block, Fvec0)
    snes.setJacobian(problem.J_block, J=Jmat0, P=Pmat0)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    x0 = dolfinx.fem.create_vector_block(F)
    with u.vector.localForm() as _u, p.vector.localForm() as _p:
        dolfinx.cpp.la.scatter_local_vectors(x0, [_u.array_r, _p.array_r], [
            u.function_space.dofmap.index_map,
            p.function_space.dofmap.index_map
        ])
    x0.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    snes.solve(None, x0)

    assert snes.getConvergedReason() > 0

    # -- Blocked and nested

    Jmat1 = dolfinx.fem.create_matrix_nest(J)
    Pmat1 = dolfinx.fem.create_matrix_nest(P)
    Fvec1 = dolfinx.fem.create_vector_nest(F)

    snes = PETSc.SNES().create(dolfinx.MPI.comm_world)
    snes.setTolerances(rtol=1.0e-15, max_it=10)

    nested_IS = Jmat1.getNestISs()

    snes.getKSP().setType("minres")
    snes.getKSP().setTolerances(rtol=1e-12)
    snes.getKSP().getPC().setType("fieldsplit")
    snes.getKSP().getPC().setFieldSplitIS(["u", nested_IS[0][0]],
                                          ["p", nested_IS[1][1]])

    ksp_u, ksp_p = snes.getKSP().getPC().getFieldSplitSubKSP()
    ksp_u.setType("preonly")
    ksp_u.getPC().setType('lu')
    ksp_u.getPC().setFactorSolverType('mumps')
    ksp_p.setType("preonly")
    ksp_p.getPC().setType('lu')
    ksp_p.getPC().setFactorSolverType('mumps')

    problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs, P=P)
    snes.setFunction(problem.F_nest, Fvec1)
    snes.setJacobian(problem.J_nest, J=Jmat1, P=Pmat1)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    x1 = dolfinx.fem.create_vector_nest(F)
    for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)):
        x1_sub, soln_sub = x1_soln_pair
        soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                    mode=PETSc.ScatterMode.FORWARD)
        soln_sub.vector.copy(result=x1_sub)
        x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                           mode=PETSc.ScatterMode.FORWARD)

    x1.set(0.0)
    snes.solve(None, x1)

    assert snes.getConvergedReason() > 0
    assert nest_matrix_norm(Jmat1) == pytest.approx(Jmat0.norm(), 1.0e-12)
    assert Fvec1.norm() == pytest.approx(Fvec0.norm(), 1.0e-12)
    assert x1.norm() == pytest.approx(x0.norm(), 1.0e-12)

    # -- Monolithic

    P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
    P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    TH = P2_el * P1_el
    W = dolfinx.FunctionSpace(mesh, TH)
    U = dolfinx.Function(W)
    dU = ufl.TrialFunction(W)
    u, p = ufl.split(U)
    du, dp = ufl.split(dU)
    v, q = ufl.TestFunctions(W)

    F = inner(ufl.grad(u), ufl.grad(v)) * dx + inner(p, ufl.div(v)) * dx \
        + inner(ufl.div(u), q) * dx
    J = derivative(F, U, dU)
    P = inner(ufl.grad(du), ufl.grad(v)) * dx + inner(dp, q) * dx

    bdofsW0_P2_0 = dolfinx.fem.locate_dofs_topological((W.sub(0), P2),
                                                       facetdim, bndry_facets0)
    bdofsW0_P2_1 = dolfinx.fem.locate_dofs_topological((W.sub(0), P2),
                                                       facetdim, bndry_facets1)

    bcs = [
        dolfinx.DirichletBC(u_bc_0, bdofsW0_P2_0, W.sub(0)),
        dolfinx.DirichletBC(u_bc_1, bdofsW0_P2_1, W.sub(0))
    ]

    Jmat2 = dolfinx.fem.create_matrix(J)
    Pmat2 = dolfinx.fem.create_matrix(P)
    Fvec2 = dolfinx.fem.create_vector(F)

    snes = PETSc.SNES().create(dolfinx.MPI.comm_world)
    snes.setTolerances(rtol=1.0e-15, max_it=10)

    snes.getKSP().setType("minres")
    snes.getKSP().getPC().setType("lu")
    snes.getKSP().getPC().setFactorSolverType("mumps")

    problem = NonlinearPDE_SNESProblem(F, J, U, bcs, P=P)
    snes.setFunction(problem.F_mono, Fvec2)
    snes.setJacobian(problem.J_mono, J=Jmat2, P=Pmat2)

    U.interpolate(lambda x: numpy.row_stack(
        (initial_guess_u(x), initial_guess_p(x))))

    x2 = dolfinx.fem.create_vector(F)
    x2.array = U.vector.array_r

    snes.solve(None, x2)

    assert snes.getConvergedReason() > 0
    assert Jmat2.norm() == pytest.approx(Jmat0.norm(), 1.0e-12)
    assert Fvec2.norm() == pytest.approx(Fvec0.norm(), 1.0e-12)
    assert x2.norm() == pytest.approx(x0.norm(), 1.0e-12)
Example #3
0
def test_matrix_assembly_block():
    """Test assembly of block matrices and vectors into (a) monolithic
    blocked structures, PETSc Nest structures, and monolithic structures
    in the nonlinear setting
    """
    mesh = dolfinx.generation.UnitSquareMesh(dolfinx.MPI.comm_world, 4, 8)

    p0, p1 = 1, 2
    P0 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p0)
    P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p1)

    V0 = dolfinx.function.FunctionSpace(mesh, P0)
    V1 = dolfinx.function.FunctionSpace(mesh, P1)

    def boundary(x):
        return numpy.logical_or(x[0] < 1.0e-6, x[0] > 1.0 - 1.0e-6)

    def initial_guess_u(x):
        return numpy.sin(x[0]) * numpy.sin(x[1])

    def initial_guess_p(x):
        return -x[0]**2 - x[1]**3

    def bc_value(x):
        return numpy.cos(x[0]) * numpy.cos(x[1])

    facetdim = mesh.topology.dim - 1
    mf = dolfinx.MeshFunction("size_t", mesh, facetdim, 0)
    mf.mark(boundary, 1)
    bndry_facets = numpy.where(mf.values == 1)[0]

    u_bc = dolfinx.function.Function(V1)
    u_bc.interpolate(bc_value)
    bdofs = dolfinx.fem.locate_dofs_topological(V1, facetdim, bndry_facets)
    bc = dolfinx.fem.dirichletbc.DirichletBC(u_bc, bdofs)

    # Define variational problem
    du, dp = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    u, p = dolfinx.function.Function(V0), dolfinx.function.Function(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    f = 1.0
    g = -3.0

    F0 = inner(u, v) * dx + inner(p, v) * dx - inner(f, v) * dx
    F1 = inner(u, q) * dx + inner(p, q) * dx - inner(g, q) * dx

    a_block = [[derivative(F0, u, du),
                derivative(F0, p, dp)],
               [derivative(F1, u, du),
                derivative(F1, p, dp)]]
    L_block = [F0, F1]

    # Monolithic blocked
    x0 = dolfinx.fem.create_vector_block(L_block)
    dolfinx.cpp.la.scatter_local_vectors(
        x0, [u.vector.array_r, p.vector.array_r],
        [u.function_space.dofmap.index_map, p.function_space.dofmap.index_map])
    x0.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    # Ghosts are updated inside assemble_vector_block
    A0 = dolfinx.fem.assemble_matrix_block(a_block, [bc])
    b0 = dolfinx.fem.assemble_vector_block(L_block,
                                           a_block, [bc],
                                           x0=x0,
                                           scale=-1.0)
    A0.assemble()
    assert A0.getType() != "nest"
    Anorm0 = A0.norm()
    bnorm0 = b0.norm()

    # Nested (MatNest)
    x1 = dolfinx.fem.create_vector_nest(L_block)
    for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)):
        x1_sub, soln_sub = x1_soln_pair
        soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                    mode=PETSc.ScatterMode.FORWARD)
        soln_sub.vector.copy(result=x1_sub)
        x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                           mode=PETSc.ScatterMode.FORWARD)

    A1 = dolfinx.fem.assemble_matrix_nest(a_block, [bc])
    b1 = dolfinx.fem.assemble_vector_nest(L_block)
    dolfinx.fem.apply_lifting_nest(b1, a_block, [bc], x1, scale=-1.0)
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    bcs0 = dolfinx.cpp.fem.bcs_rows(
        dolfinx.fem.assemble._create_cpp_form(L_block), [bc])
    dolfinx.fem.set_bc_nest(b1, bcs0, x1, scale=-1.0)
    A1.assemble()

    assert A1.getType() == "nest"
    assert nest_matrix_norm(A1) == pytest.approx(Anorm0, 1.0e-12)
    assert b1.norm() == pytest.approx(bnorm0, 1.0e-12)

    # Monolithic version
    E = P0 * P1
    W = dolfinx.function.FunctionSpace(mesh, E)
    dU = ufl.TrialFunction(W)
    U = dolfinx.function.Function(W)
    u0, u1 = ufl.split(U)
    v0, v1 = ufl.TestFunctions(W)

    U.interpolate(lambda x: numpy.row_stack(
        (initial_guess_u(x), initial_guess_p(x))))

    F = inner(u0, v0) * dx + inner(u1, v0) * dx + inner(u0, v1) * dx + inner(u1, v1) * dx \
        - inner(f, v0) * ufl.dx - inner(g, v1) * dx
    J = derivative(F, U, dU)

    bdofsW_V1 = dolfinx.fem.locate_dofs_topological((W.sub(1), V1), facetdim,
                                                    bndry_facets)

    bc = dolfinx.fem.dirichletbc.DirichletBC(u_bc, bdofsW_V1, W.sub(1))
    A2 = dolfinx.fem.assemble_matrix(J, [bc])
    A2.assemble()
    b2 = dolfinx.fem.assemble_vector(F)
    dolfinx.fem.apply_lifting(b2, [J], bcs=[[bc]], x0=[U.vector], scale=-1.0)
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.set_bc(b2, [bc], x0=U.vector, scale=-1.0)
    assert A2.getType() != "nest"
    assert A2.norm() == pytest.approx(Anorm0, 1.0e-12)
    assert b2.norm() == pytest.approx(bnorm0, 1.0e-12)
Example #4
0
def test_assembly_solve_block():
    """Solve a two-field nonlinear diffusion like problem with block matrix
    approaches and test that solution is the same.
    """
    mesh = dolfinx.generation.UnitSquareMesh(dolfinx.MPI.comm_world, 12, 11)
    p = 1
    P = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p)
    V0 = dolfinx.function.FunctionSpace(mesh, P)
    V1 = V0.clone()

    def bc_val_0(x):
        return x[0]**2 + x[1]**2

    def bc_val_1(x):
        return numpy.sin(x[0]) * numpy.cos(x[1])

    def initial_guess_u(x):
        return numpy.sin(x[0]) * numpy.sin(x[1])

    def initial_guess_p(x):
        return -x[0]**2 - x[1]**3

    def boundary(x):
        return numpy.logical_or(x[0] < 1.0e-6, x[0] > 1.0 - 1.0e-6)

    facetdim = mesh.topology.dim - 1
    mf = dolfinx.MeshFunction("size_t", mesh, facetdim, 0)
    mf.mark(boundary, 1)
    bndry_facets = numpy.where(mf.values == 1)[0]

    u_bc0 = dolfinx.function.Function(V0)
    u_bc0.interpolate(bc_val_0)
    u_bc1 = dolfinx.function.Function(V1)
    u_bc1.interpolate(bc_val_1)

    bdofs0 = dolfinx.fem.locate_dofs_topological(V0, facetdim, bndry_facets)
    bdofs1 = dolfinx.fem.locate_dofs_topological(V1, facetdim, bndry_facets)

    bcs = [
        dolfinx.fem.dirichletbc.DirichletBC(u_bc0, bdofs0),
        dolfinx.fem.dirichletbc.DirichletBC(u_bc1, bdofs1)
    ]

    # Block and Nest variational problem
    u, p = dolfinx.function.Function(V0), dolfinx.function.Function(V1)
    du, dp = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)

    f = 1.0
    g = -3.0

    F = [
        inner((u**2 + 1) * ufl.grad(u), ufl.grad(v)) * dx - inner(f, v) * dx,
        inner((p**2 + 1) * ufl.grad(p), ufl.grad(q)) * dx - inner(g, q) * dx
    ]

    J = [[derivative(F[0], u, du),
          derivative(F[0], p, dp)],
         [derivative(F[1], u, du),
          derivative(F[1], p, dp)]]

    # -- Blocked version
    Jmat0 = dolfinx.fem.create_matrix_block(J)
    Fvec0 = dolfinx.fem.create_vector_block(F)

    snes = PETSc.SNES().create(dolfinx.MPI.comm_world)
    snes.setTolerances(rtol=1.0e-15, max_it=10)

    snes.getKSP().setType("preonly")
    snes.getKSP().getPC().setType("lu")
    snes.getKSP().getPC().setFactorSolverType("mumps")

    problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs)
    snes.setFunction(problem.F_block, Fvec0)
    snes.setJacobian(problem.J_block, J=Jmat0, P=None)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    x0 = dolfinx.fem.create_vector_block(F)
    dolfinx.cpp.la.scatter_local_vectors(
        x0, [u.vector.array_r, p.vector.array_r],
        [u.function_space.dofmap.index_map, p.function_space.dofmap.index_map])
    x0.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    snes.solve(None, x0)

    assert snes.getKSP().getConvergedReason() > 0
    assert snes.getConvergedReason() > 0

    J0norm = Jmat0.norm()
    F0norm = Fvec0.norm()
    x0norm = x0.norm()

    # -- Nested (MatNest)
    Jmat1 = dolfinx.fem.create_matrix_nest(J)
    Fvec1 = dolfinx.fem.create_vector_nest(F)

    snes = PETSc.SNES().create(dolfinx.MPI.comm_world)
    snes.setTolerances(rtol=1.0e-15, max_it=10)

    nested_IS = Jmat1.getNestISs()

    snes.getKSP().setType("fgmres")
    snes.getKSP().setTolerances(rtol=1e-12)
    snes.getKSP().getPC().setType("fieldsplit")
    snes.getKSP().getPC().setFieldSplitIS(["u", nested_IS[0][0]],
                                          ["p", nested_IS[1][1]])

    ksp_u, ksp_p = snes.getKSP().getPC().getFieldSplitSubKSP()
    ksp_u.setType("preonly")
    ksp_u.getPC().setType('lu')
    ksp_u.getPC().setFactorSolverType('mumps')
    ksp_p.setType("preonly")
    ksp_p.getPC().setType('lu')
    ksp_p.getPC().setFactorSolverType('mumps')

    problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs)
    snes.setFunction(problem.F_nest, Fvec1)
    snes.setJacobian(problem.J_nest, J=Jmat1, P=None)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    x1 = dolfinx.fem.create_vector_nest(F)
    for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)):
        x1_sub, soln_sub = x1_soln_pair
        soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                    mode=PETSc.ScatterMode.FORWARD)
        soln_sub.vector.copy(result=x1_sub)
        x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                           mode=PETSc.ScatterMode.FORWARD)

    snes.solve(None, x1)

    assert snes.getKSP().getConvergedReason() > 0
    assert snes.getConvergedReason() > 0
    assert x1.getType() == "nest"
    assert Jmat1.getType() == "nest"
    assert Fvec1.getType() == "nest"

    J1norm = nest_matrix_norm(Jmat1)
    F1norm = Fvec1.norm()
    x1norm = x1.norm()

    assert J1norm == pytest.approx(J0norm, 1.0e-12)
    assert F1norm == pytest.approx(F0norm, 1.0e-12)
    assert x1norm == pytest.approx(x0norm, 1.0e-12)

    # -- Monolithic version
    E = P * P
    W = dolfinx.function.FunctionSpace(mesh, E)
    U = dolfinx.function.Function(W)
    dU = ufl.TrialFunction(W)
    u0, u1 = ufl.split(U)
    v0, v1 = ufl.TestFunctions(W)

    F = inner((u0**2 + 1) * ufl.grad(u0), ufl.grad(v0)) * dx \
        + inner((u1**2 + 1) * ufl.grad(u1), ufl.grad(v1)) * dx \
        - inner(f, v0) * ufl.dx - inner(g, v1) * dx
    J = derivative(F, U, dU)

    u0_bc = dolfinx.function.Function(V0)
    u0_bc.interpolate(bc_val_0)
    u1_bc = dolfinx.function.Function(V1)
    u1_bc.interpolate(bc_val_1)

    bdofsW0_V0 = dolfinx.fem.locate_dofs_topological((W.sub(0), V0), facetdim,
                                                     bndry_facets)
    bdofsW1_V1 = dolfinx.fem.locate_dofs_topological((W.sub(1), V1), facetdim,
                                                     bndry_facets)

    bcs = [
        dolfinx.fem.dirichletbc.DirichletBC(u0_bc, bdofsW0_V0, W.sub(0)),
        dolfinx.fem.dirichletbc.DirichletBC(u1_bc, bdofsW1_V1, W.sub(1))
    ]

    Jmat2 = dolfinx.fem.create_matrix(J)
    Fvec2 = dolfinx.fem.create_vector(F)

    snes = PETSc.SNES().create(dolfinx.MPI.comm_world)
    snes.setTolerances(rtol=1.0e-15, max_it=10)

    snes.getKSP().setType("preonly")
    snes.getKSP().getPC().setType("lu")
    snes.getKSP().getPC().setFactorSolverType("mumps")

    problem = NonlinearPDE_SNESProblem(F, J, U, bcs)
    snes.setFunction(problem.F_mono, Fvec2)
    snes.setJacobian(problem.J_mono, J=Jmat2, P=None)

    U.interpolate(lambda x: numpy.row_stack(
        (initial_guess_u(x), initial_guess_p(x))))

    x2 = dolfinx.fem.create_vector(F)
    x2.array = U.vector.array_r

    snes.solve(None, x2)

    assert snes.getKSP().getConvergedReason() > 0
    assert snes.getConvergedReason() > 0

    J2norm = Jmat2.norm()
    F2norm = Fvec2.norm()
    x2norm = x2.norm()

    assert J2norm == pytest.approx(J0norm, 1.0e-12)
    assert F2norm == pytest.approx(F0norm, 1.0e-12)
    assert x2norm == pytest.approx(x0norm, 1.0e-12)
Example #5
0
def test_assembly_solve_taylor_hood(mesh):
    """Assemble Stokes problem with Taylor-Hood elements and solve."""
    P2 = function.VectorFunctionSpace(mesh, ("Lagrange", 2))
    P1 = function.FunctionSpace(mesh, ("Lagrange", 1))

    def boundary0(x):
        """Define boundary x = 0"""
        return x[0] < 10 * numpy.finfo(float).eps

    def boundary1(x):
        """Define boundary x = 1"""
        return x[0] > (1.0 - 10 * numpy.finfo(float).eps)

    facetdim = mesh.topology.dim - 1
    mf = dolfinx.MeshFunction("size_t", mesh, facetdim, 0)
    mf.mark(boundary0, 1)
    mf.mark(boundary1, 2)
    bndry_facets0 = numpy.where(mf.values == 1)[0]
    bndry_facets1 = numpy.where(mf.values == 2)[0]

    bdofs0 = dolfinx.fem.locate_dofs_topological(P2, facetdim, bndry_facets0)
    bdofs1 = dolfinx.fem.locate_dofs_topological(P2, facetdim, bndry_facets1)

    u0 = dolfinx.Function(P2)
    u0.vector.set(1.0)
    u0.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)
    bc0 = dolfinx.DirichletBC(u0, bdofs0)
    bc1 = dolfinx.DirichletBC(u0, bdofs1)

    u, p = ufl.TrialFunction(P2), ufl.TrialFunction(P1)
    v, q = ufl.TestFunction(P2), ufl.TestFunction(P1)

    a00 = inner(ufl.grad(u), ufl.grad(v)) * dx
    a01 = ufl.inner(p, ufl.div(v)) * dx
    a10 = ufl.inner(ufl.div(u), q) * dx
    a11 = None

    p00 = a00
    p01, p10 = None, None
    p11 = inner(p, q) * dx

    # FIXME
    # We need zero function for the 'zero' part of L
    p_zero = dolfinx.Function(P1)
    f = dolfinx.Function(P2)
    L0 = ufl.inner(f, v) * dx
    L1 = ufl.inner(p_zero, q) * dx

    # -- Blocked (nested)

    A0 = dolfinx.fem.assemble_matrix_nest([[a00, a01], [a10, a11]], [bc0, bc1])
    A0.assemble()
    A0norm = nest_matrix_norm(A0)
    P0 = dolfinx.fem.assemble_matrix_nest([[p00, p01], [p10, p11]], [bc0, bc1])
    P0.assemble()
    P0norm = nest_matrix_norm(P0)
    b0 = dolfinx.fem.assemble_vector_nest([L0, L1])
    dolfinx.fem.apply_lifting_nest(b0, [[a00, a01], [a10, a11]], [bc0, bc1])
    for b_sub in b0.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    bcs0 = dolfinx.cpp.fem.bcs_rows(
        dolfinx.fem.assemble._create_cpp_form([L0, L1]), [bc0, bc1])
    dolfinx.fem.set_bc_nest(b0, bcs0)
    b0.assemble()
    b0norm = b0.norm()

    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setOperators(A0, P0)
    nested_IS = P0.getNestISs()
    ksp.setType("minres")
    pc = ksp.getPC()
    pc.setType("fieldsplit")
    pc.setFieldSplitIS(["u", nested_IS[0][0]], ["p", nested_IS[1][1]])
    ksp_u, ksp_p = pc.getFieldSplitSubKSP()
    ksp_u.setType("preonly")
    ksp_u.getPC().setType('lu')
    ksp_u.getPC().setFactorSolverType('mumps')
    ksp_p.setType("preonly")

    def monitor(ksp, its, rnorm):
        # print("Num it, rnorm:", its, rnorm)
        pass

    ksp.setTolerances(rtol=1.0e-8, max_it=50)
    ksp.setMonitor(monitor)
    ksp.setFromOptions()
    x0 = b0.copy()
    ksp.solve(b0, x0)
    assert ksp.getConvergedReason() > 0

    # -- Blocked (monolithic)

    A1 = dolfinx.fem.assemble_matrix_block([[a00, a01], [a10, a11]],
                                           [bc0, bc1])
    A1.assemble()
    assert A1.norm() == pytest.approx(A0norm, 1.0e-12)
    P1 = dolfinx.fem.assemble_matrix_block([[p00, p01], [p10, p11]],
                                           [bc0, bc1])
    P1.assemble()
    assert P1.norm() == pytest.approx(P0norm, 1.0e-12)

    b1 = dolfinx.fem.assemble_vector_block([L0, L1], [[a00, a01], [a10, a11]],
                                           [bc0, bc1])

    assert b1.norm() == pytest.approx(b0norm, 1.0e-12)

    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setOperators(A1, P1)
    ksp.setType("minres")
    pc = ksp.getPC()
    pc.setType('lu')
    pc.setFactorSolverType('mumps')
    ksp.setTolerances(rtol=1.0e-8, max_it=50)
    ksp.setFromOptions()
    x1 = A1.createVecRight()
    ksp.solve(b1, x1)
    assert ksp.getConvergedReason() > 0
    assert x1.norm() == pytest.approx(x0.norm(), 1e-8)

    # -- Monolithic

    P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
    P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    TH = P2_el * P1_el
    W = dolfinx.FunctionSpace(mesh, TH)
    (u, p) = ufl.TrialFunctions(W)
    (v, q) = ufl.TestFunctions(W)
    a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
    a01 = ufl.inner(p, ufl.div(v)) * dx
    a10 = ufl.inner(ufl.div(u), q) * dx
    a = a00 + a01 + a10

    p00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
    p11 = ufl.inner(p, q) * dx
    p_form = p00 + p11

    f = dolfinx.Function(W.sub(0).collapse())
    p_zero = dolfinx.Function(W.sub(1).collapse())
    L0 = inner(f, v) * dx
    L1 = inner(p_zero, q) * dx
    L = L0 + L1

    bdofsW0_P2_0 = dolfinx.fem.locate_dofs_topological((W.sub(0), P2),
                                                       facetdim, bndry_facets0)
    bdofsW0_P2_1 = dolfinx.fem.locate_dofs_topological((W.sub(0), P2),
                                                       facetdim, bndry_facets1)

    bc0 = dolfinx.DirichletBC(u0, bdofsW0_P2_0, W.sub(0))
    bc1 = dolfinx.DirichletBC(u0, bdofsW0_P2_1, W.sub(0))

    A2 = dolfinx.fem.assemble_matrix(a, [bc0, bc1])
    A2.assemble()
    assert A2.norm() == pytest.approx(A0norm, 1.0e-12)
    P2 = dolfinx.fem.assemble_matrix(p_form, [bc0, bc1])
    P2.assemble()
    assert P2.norm() == pytest.approx(P0norm, 1.0e-12)

    b2 = dolfinx.fem.assemble_vector(L)
    dolfinx.fem.apply_lifting(b2, [a], [[bc0, bc1]])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.set_bc(b2, [bc0, bc1])
    b2norm = b2.norm()
    assert b2norm == pytest.approx(b0norm, 1.0e-12)

    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setOperators(A2, P2)
    ksp.setType("minres")
    pc = ksp.getPC()
    pc.setType('lu')
    pc.setFactorSolverType('mumps')

    def monitor(ksp, its, rnorm):
        # print("Num it, rnorm:", its, rnorm)
        pass

    ksp.setTolerances(rtol=1.0e-8, max_it=50)
    ksp.setMonitor(monitor)
    ksp.setFromOptions()
    x2 = A2.createVecRight()
    ksp.solve(b2, x2)
    assert ksp.getConvergedReason() > 0
    assert x0.norm() == pytest.approx(x2.norm(), 1e-8)
Example #6
0
def test_assembly_solve_block():
    """Solve a two-field mass-matrix like problem with block matrix approaches
    and test that solution is the same.
    """
    mesh = dolfinx.generation.UnitSquareMesh(dolfinx.MPI.comm_world, 32, 31)
    P = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    V0 = dolfinx.function.FunctionSpace(mesh, P)
    V1 = V0.clone()

    def boundary(x):
        return numpy.logical_or(x[0] < 1.0e-6, x[0] > 1.0 - 1.0e-6)

    facetdim = mesh.topology.dim - 1
    mf = dolfinx.MeshFunction("size_t", mesh, facetdim, 0)
    mf.mark(boundary, 1)
    bndry_facets = numpy.where(mf.values == 1)[0]

    bdofsV0 = dolfinx.fem.locate_dofs_topological(V0, facetdim, bndry_facets)
    bdofsV1 = dolfinx.fem.locate_dofs_topological(V1, facetdim, bndry_facets)

    u_bc0 = dolfinx.function.Function(V0)
    u_bc0.vector.set(50.0)
    u_bc0.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                             mode=PETSc.ScatterMode.FORWARD)
    u_bc1 = dolfinx.function.Function(V1)
    u_bc1.vector.set(20.0)
    u_bc1.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                             mode=PETSc.ScatterMode.FORWARD)
    bcs = [
        dolfinx.fem.dirichletbc.DirichletBC(u_bc0, bdofsV0),
        dolfinx.fem.dirichletbc.DirichletBC(u_bc1, bdofsV1)
    ]

    # Variational problem
    u, p = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)
    f = 1.0
    g = -3.0
    zero = dolfinx.Function(V0)

    a00 = inner(u, v) * dx
    a01 = zero * inner(p, v) * dx
    a10 = zero * inner(u, q) * dx
    a11 = inner(p, q) * dx
    L0 = inner(f, v) * dx
    L1 = inner(g, q) * dx

    def monitor(ksp, its, rnorm):
        pass
        # print("Norm:", its, rnorm)

    A0 = dolfinx.fem.assemble_matrix_block([[a00, a01], [a10, a11]], bcs)
    b0 = dolfinx.fem.assemble_vector_block([L0, L1], [[a00, a01], [a10, a11]],
                                           bcs)
    A0.assemble()
    A0norm = A0.norm()
    b0norm = b0.norm()
    x0 = A0.createVecLeft()
    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setOperators(A0)
    ksp.setMonitor(monitor)
    ksp.setType('cg')
    ksp.setTolerances(rtol=1.0e-14)
    ksp.setFromOptions()
    ksp.solve(b0, x0)
    x0norm = x0.norm()

    # Nested (MatNest)
    A1 = dolfinx.fem.assemble_matrix_nest([[a00, a01], [a10, a11]], bcs)
    A1.assemble()
    b1 = dolfinx.fem.assemble_vector_nest([L0, L1])
    dolfinx.fem.apply_lifting_nest(b1, [[a00, a01], [a10, a11]], bcs)
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    bcs0 = dolfinx.cpp.fem.bcs_rows(
        dolfinx.fem.assemble._create_cpp_form([L0, L1]), bcs)
    dolfinx.fem.set_bc_nest(b1, bcs0)
    b1.assemble()

    b1norm = b1.norm()
    assert b1norm == pytest.approx(b0norm, 1.0e-12)
    A1norm = nest_matrix_norm(A1)
    assert A0norm == pytest.approx(A1norm, 1.0e-12)

    x1 = b1.copy()
    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setMonitor(monitor)
    ksp.setOperators(A1)
    ksp.setType('cg')
    ksp.setTolerances(rtol=1.0e-12)
    ksp.setFromOptions()
    ksp.solve(b1, x1)
    x1norm = x1.norm()
    assert x1norm == pytest.approx(x0norm, rel=1.0e-12)

    # Monolithic version
    E = P * P
    W = dolfinx.function.FunctionSpace(mesh, E)
    u0, u1 = ufl.TrialFunctions(W)
    v0, v1 = ufl.TestFunctions(W)
    a = inner(u0, v0) * dx + inner(u1, v1) * dx
    L = inner(f, v0) * ufl.dx + inner(g, v1) * dx

    u0_bc = dolfinx.function.Function(V0)
    u0_bc.vector.set(50.0)
    u0_bc.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                             mode=PETSc.ScatterMode.FORWARD)
    u1_bc = dolfinx.function.Function(V1)
    u1_bc.vector.set(20.0)
    u1_bc.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                             mode=PETSc.ScatterMode.FORWARD)

    bdofsW0_V0 = dolfinx.fem.locate_dofs_topological((W.sub(0), V0), facetdim,
                                                     bndry_facets)
    bdofsW1_V1 = dolfinx.fem.locate_dofs_topological((W.sub(1), V1), facetdim,
                                                     bndry_facets)

    bcs = [
        dolfinx.fem.dirichletbc.DirichletBC(u0_bc, bdofsW0_V0, W.sub(0)),
        dolfinx.fem.dirichletbc.DirichletBC(u1_bc, bdofsW1_V1, W.sub(1))
    ]

    A2 = dolfinx.fem.assemble_matrix(a, bcs)
    A2.assemble()
    b2 = dolfinx.fem.assemble_vector(L)
    dolfinx.fem.apply_lifting(b2, [a], [bcs])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.set_bc(b2, bcs)
    A2norm = A2.norm()
    b2norm = b2.norm()
    assert A2norm == pytest.approx(A0norm, 1.0e-12)
    assert b2norm == pytest.approx(b0norm, 1.0e-12)

    x2 = b2.copy()
    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setMonitor(monitor)
    ksp.setOperators(A2)
    ksp.setType('cg')
    ksp.getPC().setType('jacobi')
    ksp.setTolerances(rtol=1.0e-12)
    ksp.setFromOptions()
    ksp.solve(b2, x2)
    x2norm = x2.norm()
    assert x2norm == pytest.approx(x0norm, 1.0e-10)
Example #7
0
def test_matrix_assembly_block():
    """Test assembly of block matrices and vectors into (a) monolithic
    blocked structures, PETSc Nest structures, and monolithic structures.
    """
    mesh = dolfinx.generation.UnitSquareMesh(dolfinx.MPI.comm_world, 4, 8)

    p0, p1 = 1, 2
    P0 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p0)
    P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p1)

    V0 = dolfinx.function.FunctionSpace(mesh, P0)
    V1 = dolfinx.function.FunctionSpace(mesh, P1)

    def boundary(x):
        return numpy.logical_or(x[0] < 1.0e-6, x[0] > 1.0 - 1.0e-6)

    # Prepare a MeshFunction used for boundary conditions
    facetdim = mesh.topology.dim - 1
    mf = dolfinx.MeshFunction("size_t", mesh, facetdim, 0)
    mf.mark(boundary, 1)
    bndry_facets = numpy.where(mf.values == 1)[0]

    bdofsV1 = dolfinx.fem.locate_dofs_topological(V1, facetdim, bndry_facets)

    u_bc = dolfinx.function.Function(V1)
    with u_bc.vector.localForm() as u_local:
        u_local.set(50.0)
    bc = dolfinx.fem.dirichletbc.DirichletBC(u_bc, bdofsV1)

    # Define variational problem
    u, p = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)
    f = 1.0
    g = -3.0
    zero = dolfinx.Function(V0)

    a00 = inner(u, v) * dx
    a01 = inner(p, v) * dx
    a10 = inner(u, q) * dx
    a11 = inner(p, q) * dx

    L0 = zero * inner(f, v) * dx
    L1 = inner(g, q) * dx

    a_block = [[a00, a01], [a10, a11]]
    L_block = [L0, L1]

    # Monolithic blocked
    A0 = dolfinx.fem.assemble_matrix_block(a_block, [bc])
    A0.assemble()
    b0 = dolfinx.fem.assemble_vector_block(L_block, a_block, [bc])
    assert A0.getType() != "nest"
    Anorm0 = A0.norm()
    bnorm0 = b0.norm()

    # Nested (MatNest)
    A1 = dolfinx.fem.assemble_matrix_nest(a_block, [bc])
    A1.assemble()
    Anorm1 = nest_matrix_norm(A1)
    assert Anorm0 == pytest.approx(Anorm1, 1.0e-12)

    b1 = dolfinx.fem.assemble_vector_nest(L_block)
    dolfinx.fem.apply_lifting_nest(b1, a_block, [bc])
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    bcs0 = dolfinx.cpp.fem.bcs_rows(
        dolfinx.fem.assemble._create_cpp_form(L_block), [bc])
    dolfinx.fem.set_bc_nest(b1, bcs0)
    b1.assemble()

    bnorm1 = math.sqrt(sum([x.norm()**2 for x in b1.getNestSubVecs()]))
    assert bnorm0 == pytest.approx(bnorm1, 1.0e-12)

    # Monolithic version
    E = P0 * P1
    W = dolfinx.function.FunctionSpace(mesh, E)
    u0, u1 = ufl.TrialFunctions(W)
    v0, v1 = ufl.TestFunctions(W)
    a = inner(u0, v0) * dx + inner(u1, v1) * dx + inner(u0, v1) * dx + inner(
        u1, v0) * dx
    L = zero * inner(f, v0) * ufl.dx + inner(g, v1) * dx

    bdofsW_V1 = dolfinx.fem.locate_dofs_topological(
        (W.sub(1), V1), mesh.topology.dim - 1, bndry_facets)

    bc = dolfinx.fem.dirichletbc.DirichletBC(u_bc, bdofsW_V1, W.sub(1))
    A2 = dolfinx.fem.assemble_matrix(a, [bc])
    A2.assemble()
    b2 = dolfinx.fem.assemble_vector(L)
    dolfinx.fem.apply_lifting(b2, [a], [[bc]])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.set_bc(b2, [bc])
    assert A2.getType() != "nest"
    assert A2.norm() == pytest.approx(Anorm0, 1.0e-9)
    assert b2.norm() == pytest.approx(bnorm0, 1.0e-9)
Example #8
0
U = dolfinx.FunctionSpace(mesh, Ue)

# Get local dofmap sizes for later local tensor tabulations
Ssize = S.dolfin_element().space_dimension()
Usize = U.dolfin_element().space_dimension()

sigma, tau = ufl.TrialFunction(S), ufl.TestFunction(S)
u, v = ufl.TrialFunction(U), ufl.TestFunction(U)

# Homogeneous boundary condition in displacement
u_bc = dolfinx.Function(U)
with u_bc.vector.localForm() as loc:
    loc.set(0.0)

facetdim = mesh.topology.dim - 1
mf = dolfinx.MeshFunction("size_t", mesh, facetdim, 0)
mf.mark(lambda x: numpy.isclose(x[0], 0.0), 1)
bndry_facets = numpy.where(mf.values == 1)[0]

# Displacement BC is applied to the right side
bdofs = dolfinx.fem.locate_dofs_topological(U, facetdim, bndry_facets)
bc = dolfinx.fem.DirichletBC(u_bc, bdofs)


def free_end(x):
    """Marks the leftmost points of the cantilever"""
    return numpy.isclose(x[0], 48.0)


# Mark free end facets as 1
mf = dolfinx.mesh.MeshFunction("size_t", mesh, 1, 0)
Example #9
0
def test_assembly_dx_domains(mesh):
    V = dolfinx.FunctionSpace(mesh, ("CG", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    marker = dolfinx.MeshFunction("size_t", mesh, mesh.topology.dim, 0)
    values = marker.values
    # Mark first, second and all other
    # Their union is the whole domain
    values[0] = 111
    values[1] = 222
    values[2:] = 333

    dx = ufl.Measure('dx', subdomain_data=marker, domain=mesh)

    w = dolfinx.Function(V)
    with w.vector.localForm() as w_local:
        w_local.set(0.5)

    #
    # Assemble matrix
    #

    a = w * ufl.inner(u, v) * (dx(111) + dx(222) + dx(333))

    A = dolfinx.fem.assemble_matrix(a)
    A.assemble()
    norm1 = A.norm()

    a2 = w * ufl.inner(u, v) * dx

    A2 = dolfinx.fem.assemble_matrix(a2)
    A2.assemble()
    norm2 = A2.norm()

    assert norm1 == pytest.approx(norm2, 1.0e-12)

    #
    # Assemble vector
    #

    L = ufl.inner(w, v) * (dx(111) + dx(222) + dx(333))
    b = dolfinx.fem.assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    L2 = ufl.inner(w, v) * dx
    b2 = dolfinx.fem.assemble_vector(L2)
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    assert b.norm() == pytest.approx(b2.norm(), 1.0e-12)

    #
    # Assemble scalar
    #

    L = w * (dx(111) + dx(222) + dx(333))
    s = dolfinx.fem.assemble_scalar(L)
    s = dolfinx.MPI.sum(mesh.mpi_comm(), s)

    L2 = w * dx
    s2 = dolfinx.fem.assemble_scalar(L2)
    s2 = dolfinx.MPI.sum(mesh.mpi_comm(), s2)

    assert (s == pytest.approx(s2, 1.0e-12)
            and 0.5 == pytest.approx(s, 1.0e-12))