Example #1
0
    def __init__(self, lower, upper, explore_priority=0.0001):
        """
        Initialise the Delaunay class.

        .. note ::

            Currently only supports rectangular type restrictions on the
            parameter space

        Parameters
        ----------
        lower : array_like
            Lower or minimum bounds for the parameter space
        upper : array_like
            Upper or maximum bounds for the parameter space
        explore_priority : float, optional
            The priority of exploration against exploitation
        """
        Sampler.__init__(self, lower, upper)
        self.triangulation = None  # Delaunay model
        self.simplex_cache = {}  # Pre-computed values of simplices
        self.explore_priority = explore_priority
Example #2
0
    def __init__(self, lower, upper, explore_priority=0.0001):
        """
        Initialise the Delaunay class.

        .. note ::

            Currently only supports rectangular type restrictions on the
            parameter space

        Parameters
        ----------
        lower : array_like
            Lower or minimum bounds for the parameter space
        upper : array_like
            Upper or maximum bounds for the parameter space
        explore_priority : float, optional
            The priority of exploration against exploitation
        """
        Sampler.__init__(self, lower, upper)
        self.triangulation = None  # Delaunay model
        self.simplex_cache = {}  # Pre-computed values of simplices
        self.explore_priority = explore_priority
Example #3
0
    def __init__(self, lower, upper, kerneldef=None, n_train=50,
                 acq_name='var_sum', explore_priority=1., seed=None):
        """
        Initialise the GaussianProcess class.

        .. note:: Currently only supports rectangular type restrictions on the
        parameter space

        Parameters
        ----------
        lower : array_like
            Lower or minimum bounds for the parameter space
        upper : array_like
            Upper or maximum bounds for the parameter space
        kerneldef : function
            Kernel function definition. See the 'gp' module.
        n_train : int
            Number of training samples required before sampler can be trained
        acq_name : str
            A string specifying the type of acquisition function used
        explore_priority : float, optional
            The priority of exploration against exploitation
        """
        Sampler.__init__(self, lower, upper)

        self.kerneldef = kerneldef
        self.n_min = n_train
        self.acq_name = acq_name
        self.explore_priority = explore_priority
        self.hyperparams = None
        self.regressors = None
        self.y_mean = None
        self.n_tasks = None

        if seed:
            np.random.seed(seed)