def parallelize(game, params): print(params) #game = "/home/eilab/Raj/tw-drl/Games/obj_20_qlen_5_room_10/train/game_" + str(10) + ".ulx" trainer = DQNTrainer(game, params) trainer.train() #del trainer.model #del trainer #gc.collect() """
def parallelize(game, params): print(params) trainer = DQNTrainer(game, params) trainer.train()
from dqn import DQNTrainer from joblib import Parallel, delayed import multiprocessing import gc def parallelize(game, params): print(params) trainer = DQNTrainer(game, params) trainer.train() if __name__ == "__main__": trainer = DQNTrainer() trainer.train_QA()
if args.obj is not None: obj = args.obj envs = [] for g, seeds in zip(graphs, e_seeds_list): env = NetworkEnv(fullGraph=g, seeds=seeds, opt_reward=0, nop_r=args.nop_reward, times_mean=args.times_mean_env, bad_reward=args.bad_reward, clip_max=args.max_reward, clip_min=args.min_reward, normalize=args.norm_reward) envs.append(env) replay = PriortizedReplay(BUFF_SIZE, 10, beta=0.6) logging.info('State Dimensions: ' + str(action_dim)) logging.info('Action Dimensions: ' + str(action_dim)) acmodel = DQNTrainer(input_dim=input_dim, state_dim=action_dim, action_dim=action_dim, replayBuff=replay, lr=LR, use_cuda=use_cuda, gamma=args.gamma, eta=eta, gcn_num_layers=gcn_layers, num_pooling=num_pooling, assign_dim=assign_dim, assign_hidden_dim=assign_hidden_dim) noise = OrnsteinUhlenbeckActionNoise(action_dim, theta=noise_momentum, sigma=noise_magnitude) # ! Doesn't Support nested models # writer.add_graph(acmodel.actor_critic) rws = [] def make_const_attrs(graph, input_dim): n = len(graph) mat = np.ones((n, input_dim)) # mat = np.random.rand(n,input_dim) return mat
bad_reward=args.bad_reward, clip_max=args.max_reward, clip_min=args.min_reward, normalize=args.norm_reward) envs.append(env) replay = PriortizedReplay(BUFF_SIZE, 10, beta=0.6) logging.info('State Dimensions: ' + str(action_dim)) logging.info('Action Dimensions: ' + str(action_dim)) acmodel = DQNTrainer(input_dim=input_dim, state_dim=action_dim, action_dim=action_dim, replayBuff=replay, lr=LR, use_cuda=use_cuda, gamma=args.gamma, eta=eta, gcn_num_layers=gcn_layers, num_pooling=num_pooling, assign_dim=assign_dim, assign_hidden_dim=assign_hidden_dim) noise = OrnsteinUhlenbeckActionNoise(action_dim, theta=noise_momentum, sigma=noise_magnitude) # ! Doesn't Support nested models # writer.add_graph(acmodel.actor_critic) rws = []