Example #1
0
class Agent():
    """Interacts with and learns from the environment.
        Agent is made of several functions:
            init : create an agent
			step : save experience in memory and decide if it is time to learn
            act : decide the most relevant action in function of the environment state and current knowledge
            learn : learn for past experiences
					Use the soft_update function to update the target Qnetwork
    
    """
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size, seed).to(DEVICE)
        self.qnetwork_target = QNetwork(state_size, action_size, seed).to(DEVICE)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
    
    def step(self, state, action, reward, next_state, done):
        """Function triggering the learning phase if enough exploration has been done
		At each step, record the experience in the memory
		After collecting experiences, learn from them
        Params
        ======
            experience = state, action, reward, next_state, done
        """
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)
        
        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(DEVICE)
		# switch network into evaluation mode when not training
        self.qnetwork_local.eval()
		# deactivate gradient tracking as we do not to back propagate 
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
		# switch network into training mode
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
        # Compute Q targets for current states 
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss using mean square error
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
		# update network weights
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)                     

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
Example #2
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = seed

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.

        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        # compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)
        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)

        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
Example #3
0
File: dqn.py Project: kwangphys/rl
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, random_seed):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       random_seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        random_seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE,
                                   random_seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.

        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def train(self, env, n_episodes=1000, max_t=1000):
        scores_deque = deque(maxlen=100)
        scores = []
        eps = 1.0
        for i_episode in range(1, n_episodes + 1):
            state = env.reset()
            score = 0
            for t in range(max_t):
                action = self.act(state, eps)
                next_state, reward, done, _ = env.step(action)
                self.step(state, action, reward, next_state, done)
                state = next_state
                score += reward
                if eps > EPS_MIN:
                    eps *= EPS_DECAY
                if done:
                    break
            scores_deque.append(score)
            scores.append(score)
            print('\rEpisode {}\tAverage Score: {:.2f}\tScore: {:.2f}'.format(
                i_episode, np.mean(scores_deque), score),
                  end="")
            if i_episode % 100 == 0:
                torch.save(self.qnetwork_local.state_dict(), 'checkpoint.pth')
            print('\rEpisode {}\tAverage Score: {:.2f}\tEps: {:.2f}'.format(
                i_episode, np.mean(scores_deque), eps))
        return scores

    def load(self):
        self.qnetwork_local.load_state_dict(torch.load('checkpoint.pth'))
        self.qnetwork_local.eval()
        self.qnetwork_target.load_state_dict(torch.load('checkpoint.pth'))
        self.qnetwork_target.eval()
Example #4
0
class DQN_Agent():
    """Interacts with and learns from the environment."""
    def __init__(self,
                 state_size,
                 action_size,
                 brain_name,
                 seed,
                 params=default_params,
                 verbose=False,
                 device=None):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        params = self._fill_params(params)

        # implementation details and identity
        self.device = device if device is not None else torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")
        self.name = params['name']
        self.brain_name = brain_name

        # set environment information
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size,
                                       action_size,
                                       seed,
                                       layers=params['layers']).to(self.device)
        self.qnetwork_target = QNetwork(state_size,
                                        action_size,
                                        seed,
                                        layers=params['layers']).to(
                                            self.device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(),
                                    lr=params['learning_rate'])

        # Replay memory
        self.memory = ReplayBuffer(action_size, params['buffer_size'],
                                   params['batch_size'], seed)

        # Initialize time steps, t_step for updates, c_step for copying weights
        self.t_step = 0
        self.c_step = 0

        # store params for later
        self.params = params

    def _fill_params(self, src_params):
        params = {
            'name':
            self._get_param_or_default('name', src_params, default_params),
            'layers':
            self._get_param_or_default('layers', src_params, default_params),
            'buffer_size':
            self._get_param_or_default('buffer_size', src_params,
                                       default_params),
            'batch_size':
            self._get_param_or_default('batch_size', src_params,
                                       default_params),
            'update_every':
            self._get_param_or_default('update_every', src_params,
                                       default_params),
            'copy_every':
            self._get_param_or_default('copy_every', src_params,
                                       default_params),
            'learning_rate':
            self._get_param_or_default('learning_rate', src_params,
                                       default_params),
            'gamma':
            self._get_param_or_default('gamma', src_params, default_params),
            'tau':
            self._get_param_or_default('tau', src_params, default_params)
        }
        return params

    def _get_param_or_default(self, key, src_params, default_params):
        if key in src_params:
            return src_params[key]
        else:
            return default_params[key]

    def display_params(self, force_print=False):
        p = '{}: h{}, exp[{}, {}], u,c[{}, {}], g,t,lr[{}, {}, {}]'.format(
            self.params['name'], self.params['layers'],
            self.params['buffer_size'], self.params['batch_size'],
            self.params['update_every'], self.params['copy_every'],
            self.params['gamma'], self.params['tau'],
            self.params['learning_rate'])
        if force_print:
            print(p)
        return p

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # update timesteps
        self.t_step = (self.t_step + 1) % self.params['update_every']
        self.c_step = (self.c_step + 1) % self.params['copy_every']

        # only update every params.UpdateEvery timesteps
        if self.t_step == 0:
            if len(self.memory) >= self.params['batch_size']:
                # get random subset and learn
                experiences = self.memory.sample()
                self.learn(experiences, self.params['gamma'])

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        # get action values for state
        state = torch.from_numpy(state).float().unsqueeze(0).to(self.device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)

        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model for evaluation
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Minimize the loss
        loss = F.mse_loss(Q_expected, Q_targets)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # update the weights in the target network every c_steps
        if self.c_step == 0:
            self.soft_update(self.qnetwork_local, self.qnetwork_target,
                             self.params['tau'])

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter (0 = all target, 1 = all local)
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
Example #5
0
class DQNAgent():
    """Interacts with and learns from the environment."""
    def __init__(self,
                 state_size,
                 action_size,
                 seed,
                 hidden_layer1=64,
                 hidden_layer2=108):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size, seed,
                                       hidden_layer1, hidden_layer2).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size, seed,
                                        hidden_layer1,
                                        hidden_layer2).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def save(self, file_name):
        torch.save(self.qnetwork_local.state_dict(), file_name)

    def load(self, file_name):
        self.qnetwork_local.load_state_dict(torch.load(file_name))

    def save_bin(self, file_name):
        torch.save(self.qnetwork_local.state_dict(), file_name)
        keymap = self.qnetwork_local.state_dict()
        outputfloats = []

        for key, value in keymap.items():
            # ignore keys order is all that matteers
            if isinstance(value, torch.Tensor):
                tup = value.size()
                lv = value.tolist()
                if isinstance(lv, float):
                    outputfloats.append(lv)
                else:
                    for row in lv:
                        if isinstance(row, float):
                            outputfloats.append(row)
                        else:
                            for item in row:
                                outputfloats.append(item)
        while (len(outputfloats) < 8192):
            outputfloats.append(0.0)

        output_file = open(file_name, 'wb')
        float_array = array('f', outputfloats)
        float_array.tofile(output_file)
        output_file.close()

    def load_bin(self, file_name):
        keymap = self.qnetwork_local.state_dict()
        new_keymap = OrderedDict()
        sz = os.path.getsize(file_name)
        input_file = open(file_name, 'rb')
        n = sz / 4
        buff = input_file.read(sz)
        fmtstr = '{:d}f'.format(trunc(n))
        inputfloats = struct.unpack(fmtstr, buff)
        input_file.close()
        index = 0
        for key, value in keymap.items():
            # ignore keys order is all that matteers
            if isinstance(value, torch.Tensor):
                tup = value.size()
                if len(tup) == 2:
                    dtensor = []
                    for row in range(tup[0]):
                        trow = []
                        for col in range(tup[1]):
                            trow.append(inputfloats[index])
                            index += 1
                        dtensor.append(trow)
                    tensor_from_list = torch.FloatTensor(dtensor)
                    new_keymap[key] = tensor_from_list
                else:
                    dtensor = []
                    for row in range(tup[0]):
                        dtensor.append(inputfloats[index])
                        index += 1
                    tensor_from_list = torch.FloatTensor(dtensor)
                    new_keymap[key] = tensor_from_list
        self.qnetwork_local.load_state_dict(new_keymap)

    def weights(self):
        return self.qnetwork_local.state_dict()

    def fitness(self, episode_reward):
        # How we calculate the % fitness
        # Episide reward is a value from about -500 to +300
        # < 0 is very bad crash
        # < 100 is bad crash   0%
        # < 150 is failure
        # < 200 is poor
        # > 200 is okay, pass mark  50%
        # > 220 is good
        # > 240 is very good
        # > 270 is excellent
        # > 300 is perfect, 100%

        # Assuming 100% = 300 and 100 is 0
        fitness = episode_reward - 100
        if fitness < 0:
            fitness = 0  # Bad lowest floor of 0%, anything below is consisdered 0%

        # Now divide score by 2 to get %
        fitness = fitness / 2
        if fitness > 100:
            fitness = 100  # Highest cap to 100%, anything above is considered 100%

        # Note that 50% is now considered 'okay' its a successful landing, passing mark
        return fitness

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)