def init_variables(self, info): # Here you have the information of the game (virtual init() in random_walk.cpp) # List: game_time, goal, number_of_robots, penalty_area, codewords, # robot_height, robot_radius, max_linear_velocity, field, team_info, # {rating, name}, axle_length, resolution, ball_radius # self.game_time = info['game_time'] # self.field = info['field'] self.max_linear_velocity = info['max_linear_velocity'] self.resolution = info['resolution'] self.colorChannels = 3 # nf self.end_of_frame = False self.image = Received_Image(self.resolution, self.colorChannels) self.D = [] # Replay Memory self.update = 100 # Update Target Network self.epsilon = 1.0 # Initial epsilon value self.final_epsilon = 0.05 # Final epsilon value self.dec_epsilon = 0.05 # Decrease rate of epsilon for every generation self.step_epsilon = 20000 # Number of iterations for every generation self.observation_steps = 5000 # Number of iterations to observe before training every generation self.save_every_steps = 5000 # Save checkpoint self.num_actions = 11 # Number of possible possible actions self._frame = 0 self._iterations = 0 self.minibatch_size = 64 self.gamma = 0.99 self.sqerror = 100 # Initial sqerror value self.Q = NeuralNetwork( None, False, False ) # 2nd term: False to start training from scratch, use CHECKPOINT to load a checkpoint self.Q_ = NeuralNetwork(self.Q, False, True) self.wheels = [0 for _ in range(10)] return
def init_variables(self, info): # Here you have the information of the game (virtual init() in random_walk.cpp) # List: game_time, number_of_robots # field, goal, penalty_area, goal_area, resolution Dimension: [x, y] # ball_radius, ball_mass, # robot_size, robot_height, axle_length, robot_body_mass, ID: [0, 1, 2, 3, 4] # wheel_radius, wheel_mass, ID: [0, 1, 2, 3, 4] # max_linear_velocity, max_torque, codewords, ID: [0, 1, 2, 3, 4] # self.game_time = info['game_time'] # self.number_of_robots = info['number_of_robots'] # self.field = info['field'] # self.goal = info['goal'] # self.penalty_area = info['penalty_area'] # self.goal_area = info['goal_area'] self.resolution = info['resolution'] # self.ball_radius = info['ball_radius'] # self.ball_mass = info['ball_mass'] # self.robot_size = info['robot_size'] # self.robot_height = info['robot_height'] # self.axle_length = info['axle_length'] # self.robot_body_mass = info['robot_body_mass'] # self.wheel_radius = info['wheel_radius'] # self.wheel_mass = info['wheel_mass'] self.max_linear_velocity = info['max_linear_velocity'] # self.max_torque = info['max_torque'] # self.codewords = info['codewords'] self.total_distance=0 self.ball_touch=0 self.colorChannels = 3 # nf self.end_of_frame = False self.image = Received_Image(self.resolution, self.colorChannels) self.received_frame = Frame() self.D = [] # Replay Memory self.distance_buffer=[] #distance buffer for reward self.update = 100 # Update Target Network self.epsilon = 1.0 # Initial epsilon value self.final_epsilon = 0.05 # Final epsilon value self.dec_epsilon = 0.05 # Decrease rate of epsilon for every generation self.step_epsilon = 5000 # Number of iterations for every generation self.observation_steps = 1000 # Number of iterations to observe before training every generation self.save_every_steps = 1000 # Save checkpoint self.num_actions = 11 # Number of possible possible actions self._frame = 0 self._iterations = 0 self.minibatch_size = 64 self.gamma = 0.99 self.sqerror = 100 # Initial sqerror value self.Q = NeuralNetwork(None, False, False) # 2nd term: False to start training from scratch, use CHECKPOINT to load a checkpoint self.Q_ = NeuralNetwork(self.Q, False, True) self.wheels = [0 for _ in range(10)] return
def init_variables(self, info): # Here you have the information of the game (virtual init() in random_walk.cpp) # List: game_time, goal, number_of_robots, penalty_area, codewords, # robot_height, robot radius, max_linear_velocity, field, team_info, # {rating, name}, axle_length, resolution, ball_radius # self.game_time = info['game_time'] # self.field = info['field'] self.max_linear_velocity = info['max_linear_velocity'] self.resolution = info['resolution'] self.colorChannels = 3 # nf in dqn_main.py self.end_of_frame = False self.image = Received_Image(self.resolution, self.colorChannels) self._frame = 0 self.Q = NeuralNetwork(None, CHECKPOINT, False) # 2nd term: False to start training from scratch, use CHECKPOINT to load a checkpoint self.wheels = [0 for _ in range(10)] return
def init_variables(self, info): # Here you have the information of the game (virtual init() in random_walk.cpp) # List: game_time, number_of_robots # field, goal, penalty_area, goal_area, resolution Dimension: [x, y] # ball_radius, ball_mass, # robot_size, robot_height, axle_length, robot_body_mass, ID: [0, 1, 2, 3, 4] # wheel_radius, wheel_mass, ID: [0, 1, 2, 3, 4] # max_linear_velocity, max_torque, codewords, ID: [0, 1, 2, 3, 4] # self.game_time = info['game_time'] # self.number_of_robots = info['number_of_robots'] # self.field = info['field'] # self.goal = info['goal'] # self.penalty_area = info['penalty_area'] # self.goal_area = info['goal_area'] self.resolution = info['resolution'] # self.ball_radius = info['ball_radius'] # self.ball_mass = info['ball_mass'] # self.robot_size = info['robot_size'] # self.robot_height = info['robot_height'] # self.axle_length = info['axle_length'] # self.robot_body_mass = info['robot_body_mass'] # self.wheel_radius = info['wheel_radius'] # self.wheel_mass = info['wheel_mass'] self.max_linear_velocity = info['max_linear_velocity'] # self.max_torque = info['max_torque'] # self.codewords = info['codewords'] self.colorChannels = 3 # nf in dqn_main.py self.end_of_frame = False self.image = Received_Image(self.resolution, self.colorChannels) self._frame = 0 self.Q = NeuralNetwork( None, CHECKPOINT, False ) # 2nd term: False to start training from scratch, use CHECKPOINT to load a checkpoint self.wheels = [0 for _ in range(10)] return