Example #1
0
def create_det_eff(obj, **kwargs):
    """
    This function creates detector efficiency spectra based on the wavelength
    spectra from the given object. The efficiency spectra are created based on
    the following formalism: Ci*exp(-di*lambda) where i represents the
    constants for a given detector pixel.

    @param obj: Object containing spectra that will create the detector
                efficiency spectra.
    @type obj: C{SOM.SOM} or C{SOM.SO}
    
    @param kwargs: A list of keyword arguments that the function accepts:

    @keyword inst_name: The short name of an instrument.
    @type inst_name: C{string}
    
    @keyword eff_scale_const: Use this provided efficiency scaling constant.
    @type eff_scale_const: L{hlr_utils.DrParameter}

    @keyword eff_atten_const: Use this provided efficiency attenuation
                              constant.
    @type eff_atten_const: L{hlr_utils.DrParameter}    


    @return: Object containing the detector efficiency spectra
    @rtype: C{SOM.SOM} or C{SOM.SO}


    @raise TypeError: Incoming object is not a C{SOM} or a C{SO}
    @raise RuntimeError: The C{SOM} x-axis units are not I{Angstroms}
    """
    # Check keywords
    inst_name = kwargs.get("inst_name")
    eff_scale_const = kwargs.get("eff_scale_const")
    eff_atten_const = kwargs.get("eff_atten_const")

    # set up for working through data
    (result, res_descr) = hlr_utils.empty_result(obj)
    o_descr = hlr_utils.get_descr(obj)

    if o_descr != "SOM" and o_descr != "SO":
        raise TypeError("Only SOM or SO objects permitted to create "\
                        +"efficiency spectra!")

    # Check units on SOM, SO is assumed to be correct
    if o_descr == "SOM":
        if not obj.hasAxisUnits("Angstroms"):
            raise RuntimeError("Incoming object must has a wavelength axis "\
                               +"with units of Angstroms!")

    result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr)

    # iterate through the values
    import dr_lib
    import phys_corr
    import utils

    # Get object length
    len_obj = hlr_utils.get_length(obj)
    for i in xrange(len_obj):
        map_so = hlr_utils.get_map_so(obj, None, i)
        axis = hlr_utils.get_value(obj, i, o_descr, "x", 0)

        if inst_name is None:
            axis_bc = utils.calc_bin_centers(axis)
            (eff,
             eff_err2) = phys_corr.exp_detector_eff(axis_bc[0], 1.0, 0.0, 1.0)
        else:
            if inst_name == "SANS":
                (eff, eff_err2) = dr_lib.subexp_eff(eff_atten_const, axis,
                                                    eff_scale_const)
            else:
                raise RuntimeError("Do not know how to handle %s instrument" \
                                   % inst_name)

        hlr_utils.result_insert(result, res_descr, (eff, eff_err2), map_so)

    return result
Example #2
0
def create_det_eff(obj, **kwargs):
    """
    This function creates detector efficiency spectra based on the wavelength
    spectra from the given object. The efficiency spectra are created based on
    the following formalism: Ci*exp(-di*lambda) where i represents the
    constants for a given detector pixel.

    @param obj: Object containing spectra that will create the detector
                efficiency spectra.
    @type obj: C{SOM.SOM} or C{SOM.SO}
    
    @param kwargs: A list of keyword arguments that the function accepts:

    @keyword inst_name: The short name of an instrument.
    @type inst_name: C{string}
    
    @keyword eff_scale_const: Use this provided efficiency scaling constant.
    @type eff_scale_const: L{hlr_utils.DrParameter}

    @keyword eff_atten_const: Use this provided efficiency attenuation
                              constant.
    @type eff_atten_const: L{hlr_utils.DrParameter}    


    @return: Object containing the detector efficiency spectra
    @rtype: C{SOM.SOM} or C{SOM.SO}


    @raise TypeError: Incoming object is not a C{SOM} or a C{SO}
    @raise RuntimeError: The C{SOM} x-axis units are not I{Angstroms}
    """
    # Check keywords
    inst_name = kwargs.get("inst_name")
    eff_scale_const = kwargs.get("eff_scale_const")
    eff_atten_const = kwargs.get("eff_atten_const")

    # set up for working through data
    (result, res_descr) = hlr_utils.empty_result(obj)
    o_descr = hlr_utils.get_descr(obj)

    if o_descr != "SOM" and o_descr != "SO":
        raise TypeError("Only SOM or SO objects permitted to create "\
                        +"efficiency spectra!")

    # Check units on SOM, SO is assumed to be correct
    if o_descr == "SOM":
        if not obj.hasAxisUnits("Angstroms"):
            raise RuntimeError("Incoming object must has a wavelength axis "\
                               +"with units of Angstroms!")

    result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr)

    # iterate through the values
    import dr_lib
    import phys_corr
    import utils

    # Get object length
    len_obj = hlr_utils.get_length(obj)
    for i in xrange(len_obj):
        map_so = hlr_utils.get_map_so(obj, None, i)
        axis = hlr_utils.get_value(obj, i, o_descr, "x", 0)

        if inst_name is None:
            axis_bc = utils.calc_bin_centers(axis)
            (eff, eff_err2) = phys_corr.exp_detector_eff(axis_bc[0], 1.0,
                                                         0.0, 1.0)
        else:
            if inst_name == "SANS":
                (eff, eff_err2) = dr_lib.subexp_eff(eff_atten_const, axis,
                                                    eff_scale_const)
            else:
                raise RuntimeError("Do not know how to handle %s instrument" \
                                   % inst_name)
        
        hlr_utils.result_insert(result, res_descr, (eff, eff_err2), map_so)
    
    return result
Example #3
0
def feff_correct_mon(obj, **kwargs):
    """
    This function takes in a monitor spectra, calculates efficiencies based on
    the montior's wavelength axis and divides the monitor counts by the
    calculated efficiencies. The function is a M{constant * wavelength}.

    @param obj: Object containing monitor spectra
    @type obj: C{SOM.SOM} or C{SOM.SO}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword units: The expected units for this function. The default for this
                    function is I{Angstroms}.
    @type units: C{string}

    @keyword eff_const: Use this provided effieciency constant. The default is
                        (0.00000085 / 1.8) Angstroms^-1.
    @type eff_const: L{hlr_utils.DrParameter}

    @keyword inst_name: The short name of an instrument.
    @type inst_name: C{string}
    
    
    @return: Efficiency corrected monitor spectra
    @rtype: C{SOM.SOM} or C{SOM.SO}
    """

    # import the helper functions
    import hlr_utils

    if obj is None:
        return obj

    # set up for working through data
    (result, res_descr) = hlr_utils.empty_result(obj)
    o_descr = hlr_utils.get_descr(obj)

    # Setup keyword arguments
    try:
        units = kwargs["units"]
    except KeyError:
        units = "Angstroms"

    try:
        eff_const = kwargs["eff_const"]
    except KeyError:
        # This is for SNS (specifically BASIS) monitors
        eff_const = hlr_utils.DrParameter((0.00000085 / 1.8), 0.0,
                                          "Angstroms^-1")  # A^-1

    inst_name = kwargs.get("inst_name")

    # Primary axis for transformation. If a SO is passed, the function, will
    # assume the axis for transformation is at the 0 position
    if o_descr == "SOM":
        axis = hlr_utils.one_d_units(obj, units)
    else:
        axis = 0

    result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr)

    # iterate through the values
    import array_manip
    import nessi_list
    import dr_lib

    for i in xrange(hlr_utils.get_length(obj)):
        val = hlr_utils.get_value(obj, i, o_descr, "x", axis)
        map_so = hlr_utils.get_map_so(obj, None, i)

        if inst_name is None:
            eff = nessi_list.NessiList()

            for j in xrange(len(val) - 1):
                bin_center = (val[j + 1] + val[j]) / 2.0
                eff.append(eff_const.getValue() * bin_center)

            eff_err2 = nessi_list.NessiList(len(eff))
        else:
            if inst_name == "SANS":
                (eff, eff_err2) = dr_lib.subexp_eff(eff_const, val)
            else:
                raise RuntimeError("Do not know how to handle %s instrument" \
                                   % inst_name)

        y_val = hlr_utils.get_value(obj, i, o_descr, "y")
        y_err2 = hlr_utils.get_err2(obj, i, o_descr, "y")

        value = array_manip.div_ncerr(y_val, y_err2, eff, eff_err2)

        hlr_utils.result_insert(result, res_descr, value, map_so, "y")

    return result
def feff_correct_mon(obj, **kwargs):
    """
    This function takes in a monitor spectra, calculates efficiencies based on
    the montior's wavelength axis and divides the monitor counts by the
    calculated efficiencies. The function is a M{constant * wavelength}.

    @param obj: Object containing monitor spectra
    @type obj: C{SOM.SOM} or C{SOM.SO}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword units: The expected units for this function. The default for this
                    function is I{Angstroms}.
    @type units: C{string}

    @keyword eff_const: Use this provided effieciency constant. The default is
                        (0.00000085 / 1.8) Angstroms^-1.
    @type eff_const: L{hlr_utils.DrParameter}

    @keyword inst_name: The short name of an instrument.
    @type inst_name: C{string}
    
    
    @return: Efficiency corrected monitor spectra
    @rtype: C{SOM.SOM} or C{SOM.SO}
    """
    
    # import the helper functions
    import hlr_utils

    if obj is None:
        return obj

    # set up for working through data
    (result, res_descr) = hlr_utils.empty_result(obj)
    o_descr = hlr_utils.get_descr(obj)

    # Setup keyword arguments
    try:
        units = kwargs["units"]
    except KeyError:
        units = "Angstroms"

    try:
        eff_const = kwargs["eff_const"]
    except KeyError:
        # This is for SNS (specifically BASIS) monitors
        eff_const = hlr_utils.DrParameter((0.00000085 / 1.8), 0.0,
                                          "Angstroms^-1") # A^-1

    inst_name = kwargs.get("inst_name")

    # Primary axis for transformation. If a SO is passed, the function, will
    # assume the axis for transformation is at the 0 position
    if o_descr == "SOM":
        axis = hlr_utils.one_d_units(obj, units)
    else:
        axis = 0

    result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr)

    # iterate through the values
    import array_manip
    import nessi_list
    import dr_lib
    
    for i in xrange(hlr_utils.get_length(obj)):
        val = hlr_utils.get_value(obj, i, o_descr, "x", axis)
        map_so = hlr_utils.get_map_so(obj, None, i)

        if inst_name is None:
            eff = nessi_list.NessiList()
        
            for j in xrange(len(val)-1):
                bin_center = (val[j+1] + val[j]) / 2.0
                eff.append(eff_const.getValue() * bin_center)

            eff_err2 = nessi_list.NessiList(len(eff))
        else:
            if inst_name == "SANS":
                (eff, eff_err2) = dr_lib.subexp_eff(eff_const, val)
            else:
                raise RuntimeError("Do not know how to handle %s instrument" \
                                   % inst_name)
                
        y_val = hlr_utils.get_value(obj, i, o_descr, "y")
        y_err2 = hlr_utils.get_err2(obj, i, o_descr, "y")

        value = array_manip.div_ncerr(y_val, y_err2, eff, eff_err2)

        hlr_utils.result_insert(result, res_descr, value, map_so, "y")

    return result