def _get_session_with_reader(self, enable_tracing): """Utility to create ComputeSession management ops. Creates a new ComputeSession handle and provides the following named nodes: ComputeSession/InputBatch -- a placeholder for attaching a string specification for AttachReader. ComputeSession/AttachReader -- the AttachReader op. Args: enable_tracing: bool, whether to enable tracing before attaching the data. Returns: handle: handle to a new ComputeSession returned by the AttachReader op. input_batch: InputBatch placeholder. """ with tf.name_scope('ComputeSession'): input_batch = tf.placeholder( dtype=tf.string, shape=[None], name='InputBatch') # Get the ComputeSession and chain some essential ops. handle = self._get_compute_session() if enable_tracing: handle = dragnn_ops.set_tracing(handle, True) handle = dragnn_ops.attach_data_reader( handle, input_batch, name='AttachReader') return handle, input_batch
def _get_session_with_reader(self, enable_tracing): """Utility to create ComputeSession management ops. Creates a new ComputeSession handle and provides the following named nodes: ComputeSession/InputBatch -- a placeholder for attaching a string specification for AttachReader. ComputeSession/AttachReader -- the AttachReader op. Args: enable_tracing: bool, whether to enable tracing before attaching the data. Returns: handle: handle to a new ComputeSession returned by the AttachReader op. input_batch: InputBatch placeholder. """ with tf.name_scope('ComputeSession'): input_batch = tf.placeholder(dtype=tf.string, shape=[None], name='InputBatch') # Get the ComputeSession and chain some essential ops. handle = self._get_compute_session() if enable_tracing: handle = dragnn_ops.set_tracing(handle, True) handle = dragnn_ops.attach_data_reader(handle, input_batch, name='AttachReader') return handle, input_batch
def testBulkFeatureIdExtractorExtractFocusWithOffset(self): path = os.path.join(tf.test.get_temp_dir(), 'label-map') with open(path, 'w') as label_map_file: label_map_file.write('0\n') master_spec = spec_pb2.MasterSpec() text_format.Parse(""" component { name: "test" transition_system { registered_name: "shift-only" } resource { name: "label-map" part { file_pattern: "%s" file_format: "text" } } network_unit { registered_name: "ExportFixedFeaturesNetwork" } backend { registered_name: "SyntaxNetComponent" } fixed_feature { name: "focus1" embedding_dim: -1 size: 1 fml: "input.focus" predicate_map: "none" } fixed_feature { name: "focus2" embedding_dim: -1 size: 1 fml: "input(1).focus" predicate_map: "none" } fixed_feature { name: "focus3" embedding_dim: -1 size: 1 fml: "input(2).focus" predicate_map: "none" } } """ % path, master_spec) with tf.Graph().as_default(): corpus = _create_fake_corpus() corpus = tf.constant(corpus, shape=[len(corpus)]) handle = dragnn_ops.get_session( container='test', master_spec=master_spec.SerializeToString(), grid_point='') handle = dragnn_ops.attach_data_reader(handle, corpus) handle = dragnn_ops.init_component_data( handle, beam_size=1, component='test') batch_size = dragnn_ops.batch_size(handle, component='test') master_state = component.MasterState(handle, batch_size) extractor = bulk_component.BulkFeatureIdExtractorComponentBuilder( self.master, master_spec.component[0]) network_state = component.NetworkState() self.network_states['test'] = network_state handle = extractor.build_greedy_inference(master_state, self.network_states) focus1 = network_state.activations['focus1'].bulk_tensor focus2 = network_state.activations['focus2'].bulk_tensor focus3 = network_state.activations['focus3'].bulk_tensor with self.test_session() as sess: focus1, focus2, focus3 = sess.run([focus1, focus2, focus3]) tf.logging.info('focus1=\n%s', focus1) tf.logging.info('focus2=\n%s', focus2) tf.logging.info('focus3=\n%s', focus3) self.assertAllEqual( focus1, [[0], [-1], [-1], [-1], [0], [1], [-1], [-1], [0], [1], [2], [-1], [0], [1], [2], [3]]) self.assertAllEqual( focus2, [[-1], [-1], [-1], [-1], [1], [-1], [-1], [-1], [1], [2], [-1], [-1], [1], [2], [3], [-1]]) self.assertAllEqual( focus3, [[-1], [-1], [-1], [-1], [-1], [-1], [-1], [-1], [2], [-1], [-1], [-1], [2], [3], [-1], [-1]])